--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_9_0 metrics: - wer model-index: - name: cv9-special-batch8-lr3-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_9_0 type: common_voice_9_0 config: id split: test args: id metrics: - name: Wer type: wer value: 104.82631700023003 --- # cv9-special-batch8-lr3-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_9_0 dataset. It achieves the following results on the evaluation set: - Loss: 2.7744 - Wer: 104.8263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9757 | 0.97 | 1000 | 3.3365 | 126.4090 | | 3.4153 | 1.94 | 2000 | 2.9701 | 105.5855 | | 2.9747 | 2.9 | 3000 | 2.8029 | 99.2086 | | 2.6552 | 3.87 | 4000 | 2.6929 | 102.4891 | | 1.9795 | 4.84 | 5000 | 2.7744 | 104.8263 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3