|
import time |
|
from PIL import Image |
|
from timm.data import resolve_data_config |
|
import torch |
|
from torchvision.transforms import transforms |
|
|
|
model = torch.load('path/to/model.pth') |
|
model.eval() |
|
|
|
config = resolve_data_config({}, model=model) |
|
transform = transforms.Compose([ |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
]) |
|
|
|
|
|
with open("tags.txt", "r") as f: |
|
categories = [s.strip() for s in f.readlines()] |
|
categories=sorted(categories) |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
images=["your_image_here.jpg", "your_second_image_here.jpg"] |
|
|
|
for item in images: |
|
start = time.time() |
|
img = Image.open(item).convert('RGB') |
|
tensor = transform(img).unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
out = model(tensor) |
|
probabilities = torch.nn.functional.sigmoid(out[0]) |
|
print(probabilities.shape) |
|
|
|
|
|
top10_prob, top10_catid = torch.topk(probabilities, 10) |
|
for i in range(top10_prob.size(0)): |
|
print(categories[top10_catid[i]], top10_prob[i].item()) |
|
|
|
end = time.time() |
|
print(f'Executed in {end - start} seconds') |
|
print("\n\n", end="") |