import time from PIL import Image from timm.data import resolve_data_config import torch from torchvision.transforms import transforms model = torch.load('path/to/model.pth') model.eval() config = resolve_data_config({}, model=model) transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize image ]) with open("tags.txt", "r") as f: categories = [s.strip() for s in f.readlines()] categories=sorted(categories) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') images=["your_image_here.jpg", "your_second_image_here.jpg"] for item in images: start = time.time() img = Image.open(item).convert('RGB') tensor = transform(img).unsqueeze(0).to(device) # transform and add batch dimension with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.sigmoid(out[0]) print(probabilities.shape) top10_prob, top10_catid = torch.topk(probabilities, 10) for i in range(top10_prob.size(0)): print(categories[top10_catid[i]], top10_prob[i].item()) end = time.time() print(f'Executed in {end - start} seconds') print("\n\n", end="")