File size: 1,214 Bytes
164c320
 
 
 
 
 
 
 
 
b606f3d
164c320
b606f3d
 
 
 
 
 
 
 
 
164c320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b606f3d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import json
import time
from PIL import Image
import torch
from torchvision.transforms import transforms

model = torch.load('model.pth').to("cuda")
model.eval()
transform = transforms.Compose([
                transforms.Resize((224, 224)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[
        0.48145466,
        0.4578275,
        0.40821073
    ], std=[
        0.26862954,
        0.26130258,
        0.27577711
    ])  # Normalize image
            ])

with open("tags.json", "r") as file:
    tags = json.load(file)
allowed_tags = sorted(tags)
allowed_tags.extend(["placeholder0", "placeholder1", "placeholder2"])
tag_count = len(allowed_tags)


image_path="path/to/your/image.png"
start = time.time()
img = Image.open(image_path).convert('RGB')
tensor = transform(img).unsqueeze(0).to("cuda") # transform and add batch dimension

with torch.no_grad():
    out = model(tensor)
probabilities = torch.nn.functional.sigmoid(out[0])

top10_prob, top10_catid = torch.topk(probabilities, 100)
for i in range(top10_prob.size(0)):
    print(allowed_tags[top10_catid[i]], top10_prob[i].item())
end = time.time()
print(f'Executed in {end - start} seconds')
print("\n\n", end="")