File size: 1,214 Bytes
164c320 b606f3d 164c320 b606f3d 164c320 b606f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import json
import time
from PIL import Image
import torch
from torchvision.transforms import transforms
model = torch.load('model.pth').to("cuda")
model.eval()
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[
0.48145466,
0.4578275,
0.40821073
], std=[
0.26862954,
0.26130258,
0.27577711
]) # Normalize image
])
with open("tags.json", "r") as file:
tags = json.load(file)
allowed_tags = sorted(tags)
allowed_tags.extend(["placeholder0", "placeholder1", "placeholder2"])
tag_count = len(allowed_tags)
image_path="path/to/your/image.png"
start = time.time()
img = Image.open(image_path).convert('RGB')
tensor = transform(img).unsqueeze(0).to("cuda") # transform and add batch dimension
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.sigmoid(out[0])
top10_prob, top10_catid = torch.topk(probabilities, 100)
for i in range(top10_prob.size(0)):
print(allowed_tags[top10_catid[i]], top10_prob[i].item())
end = time.time()
print(f'Executed in {end - start} seconds')
print("\n\n", end="")
|