eva02-clip-vit-large-7704 / batched_inference.py
Thouph's picture
Upload batched_inference.py
38d5616
raw
history blame
6.65 kB
import csv
import torch.multiprocessing as multiprocessing
import pandas as pd
import numpy as np
import torchvision.transforms as transforms
from torch import autocast
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import torch
from torchvision.transforms import InterpolationMode
from tqdm import tqdm
import random
import json
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.autograd.set_detect_anomaly(False)
torch.autograd.profiler.emit_nvtx(enabled=False)
torch.autograd.profiler.profile(enabled=False)
torch.backends.cudnn.benchmark = True
class ImageDataset(Dataset):
def __init__(self, csv_file, train, base_path):
self.csv_file = csv_file
self.train = train
self.all_image_names = self.csv_file[:]['md5'].apply(str)
self.all_image_ext = self.csv_file[:]['file_ext'].apply(str)
self.train_size = len(self.csv_file)
self.base_path = base_path
if self.train == True:
print(f"Number of training images: {self.train_size}")
self.thin_transform = transforms.Compose([
transforms.Resize(224, interpolation=InterpolationMode.BICUBIC),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[
0.48145466,
0.4578275,
0.40821073
], std=[
0.26862954,
0.26130258,
0.27577711
]) # Normalize image
])
self.normal_transform = transforms.Compose([
transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=[
0.48145466,
0.4578275,
0.40821073
], std=[
0.26862954,
0.26130258,
0.27577711
]) # Normalize image
])
def __len__(self):
return len(self.all_image_names)
def __getitem__(self, index):
image = Image.open(self.base_path+"/"+str(self.all_image_names[index])+str(self.all_image_ext[index])).convert("RGB")
ratio = image.height/image.width
if ratio > 2.0 or ratio < 0.5:
image = self.thin_transform(image)
else:
image = self.normal_transform(image)
return {
'image': image,
"image_name": self.all_image_names[index]
}
def prepare_model():
model = torch.load("path/to/your/model.pth").to("cuda")
model.to(memory_format=torch.channels_last)
model = model.eval()
return model
def train(tagging_is_running, model, dataloader, train_data, output_queue):
print('Begin tagging')
model.eval()
counter = 0
with torch.no_grad():
for i, data in tqdm(enumerate(dataloader), total=int(len(train_data) / dataloader.batch_size)):
data, image_names = data['image'].to("cuda"), data["image_name"]
with autocast(device_type='cuda', dtype=torch.bfloat16):
outputs = model(data)
probabilities = torch.nn.functional.sigmoid(outputs)
output_queue.put((probabilities.to("cpu"), image_names))
counter += 1
_ = tagging_is_running.get()
print("Tagging finished!")
def tag_writer(tagging_is_running, output_queue, output_file_name):
with open("tags.json", "r") as file:
tags = json.load(file)
allowed_tags = sorted(tags)
del tags
allowed_tags.extend(["placeholder0", "placeholder1", "placeholder2"])
tag_count = len(allowed_tags)
assert tag_count == 7704, f"The length of loss scaling factor is not correct. Correct: 7704, current: {tag_count}"
with open(output_file_name, "w") as output_csv:
writer = csv.writer(output_csv)
writer.writerow(["image_name", "tags", "tag_probs"])
while not (tagging_is_running.qsize()>0 and output_queue.qsize()>0):
tag_probabilities, image_names = output_queue.get()
tag_probabilities = tag_probabilities.tolist()
for per_image_tag_probabilities,image_name in zip(tag_probabilities, image_names, strict=True):
this_image_tags = []
this_image_tag_probabilities = []
for index, per_tag_probability in enumerate(per_image_tag_probabilities):
if per_tag_probability > 0.3:
tag = allowed_tags[index]
if "placeholder" not in tag:
this_image_tags.append(tag)
this_image_tag_probabilities.append(str(int(round(per_tag_probability, 3) * 1000)))
image_row = [image_name," ".join(this_image_tags)," ".join(this_image_tag_probabilities)]
writer.writerow(image_row)
def set_seed(seed: int = 42) -> None:
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# When running on the CuDNN backend, two further options must be set
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Set a fixed value for the hash seed
print(f"Random seed set as {seed}")
if __name__ == "__main__":
steps = 0
output_file_name = "your_file.csv"
set_seed()
multiprocessing.set_start_method('spawn')
output_queue = multiprocessing.Queue()
tagging_is_running = multiprocessing.Queue(maxsize=5)
tagging_is_running.put("Running!")
# initialize the computation device
if torch.cuda.is_available():
device = torch.device('cuda')
else:
raise RuntimeError("CUDA is not available!")
model = prepare_model().to("cuda")
batch_size = 128
# read the training csv file
train_csv = pd.read_csv('/path/to/a/list/of/files/and/their/extensions.csv')
# train dataset
train_data = ImageDataset(
train_csv, train=True
)
train_loader = DataLoader(
train_data,
batch_size=batch_size,
shuffle=False,
num_workers=6,
pin_memory=True
)
process_writer = multiprocessing.Process(target=tag_writer, args=(tagging_is_running, output_queue, output_file_name))
process_writer.start()
process_tagger = multiprocessing.Process(target=train, args=(tagging_is_running, model, train_loader, train_data, output_queue,))
process_tagger.start()
process_writer.join()
process_tagger.join()