|
import json |
|
import time |
|
from PIL import Image |
|
import torch |
|
from torchvision.transforms import transforms |
|
|
|
model = torch.load('model.pth').to("cuda") |
|
model.eval() |
|
transform = transforms.Compose([ |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[ |
|
0.48145466, |
|
0.4578275, |
|
0.40821073 |
|
], std=[ |
|
0.26862954, |
|
0.26130258, |
|
0.27577711 |
|
]) |
|
]) |
|
|
|
with open("tags.json", "r") as file: |
|
tags = json.load(file) |
|
allowed_tags = sorted(tags) |
|
allowed_tags.extend(["placeholder0", "placeholder1", "placeholder2"]) |
|
tag_count = len(allowed_tags) |
|
|
|
|
|
image_path="path/to/your/image.png" |
|
start = time.time() |
|
img = Image.open(image_path).convert('RGB') |
|
tensor = transform(img).unsqueeze(0).to("cuda") |
|
|
|
with torch.no_grad(): |
|
out = model(tensor) |
|
probabilities = torch.nn.functional.sigmoid(out[0]) |
|
|
|
top10_prob, top10_catid = torch.topk(probabilities, 100) |
|
for i in range(top10_prob.size(0)): |
|
print(allowed_tags[top10_catid[i]], top10_prob[i].item()) |
|
end = time.time() |
|
print(f'Executed in {end - start} seconds') |
|
print("\n\n", end="") |
|
|