import csv import torch.multiprocessing as multiprocessing import pandas as pd import numpy as np import torchvision.transforms as transforms from torch import autocast from torch.utils.data import Dataset, DataLoader from PIL import Image import torch from torchvision.transforms import InterpolationMode from tqdm import tqdm import random import json torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True torch.autograd.set_detect_anomaly(False) torch.autograd.profiler.emit_nvtx(enabled=False) torch.autograd.profiler.profile(enabled=False) torch.backends.cudnn.benchmark = True class ImageDataset(Dataset): def __init__(self, csv_file, train, base_path): self.csv_file = csv_file self.train = train self.all_image_names = self.csv_file[:]['md5'].apply(str) self.all_image_ext = self.csv_file[:]['file_ext'].apply(str) self.train_size = len(self.csv_file) self.base_path = base_path if self.train == True: print(f"Number of training images: {self.train_size}") self.thin_transform = transforms.Compose([ transforms.Resize(224, interpolation=InterpolationMode.BICUBIC), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[ 0.48145466, 0.4578275, 0.40821073 ], std=[ 0.26862954, 0.26130258, 0.27577711 ]) # Normalize image ]) self.normal_transform = transforms.Compose([ transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=[ 0.48145466, 0.4578275, 0.40821073 ], std=[ 0.26862954, 0.26130258, 0.27577711 ]) # Normalize image ]) def __len__(self): return len(self.all_image_names) def __getitem__(self, index): image = Image.open(self.base_path+"/"+str(self.all_image_names[index])+str(self.all_image_ext[index])).convert("RGB") ratio = image.height/image.width if ratio > 2.0 or ratio < 0.5: image = self.thin_transform(image) else: image = self.normal_transform(image) return { 'image': image, "image_name": self.all_image_names[index] } def prepare_model(): model = torch.load("path/to/your/model.pth").to("cuda") model.to(memory_format=torch.channels_last) model = model.eval() return model def train(tagging_is_running, model, dataloader, train_data, output_queue): print('Begin tagging') model.eval() counter = 0 with torch.no_grad(): for i, data in tqdm(enumerate(dataloader), total=int(len(train_data) / dataloader.batch_size)): data, image_names = data['image'].to("cuda"), data["image_name"] with autocast(device_type='cuda', dtype=torch.bfloat16): outputs = model(data) probabilities = torch.nn.functional.sigmoid(outputs) output_queue.put((probabilities.to("cpu"), image_names)) counter += 1 _ = tagging_is_running.get() print("Tagging finished!") def tag_writer(tagging_is_running, output_queue, output_file_name): with open("tags.json", "r") as file: tags = json.load(file) allowed_tags = sorted(tags) del tags allowed_tags.extend(["placeholder0", "placeholder1", "placeholder2"]) tag_count = len(allowed_tags) assert tag_count == 7704, f"The length of loss scaling factor is not correct. Correct: 7704, current: {tag_count}" with open(output_file_name, "w") as output_csv: writer = csv.writer(output_csv) writer.writerow(["image_name", "tags", "tag_probs"]) while not (tagging_is_running.qsize()>0 and output_queue.qsize()>0): tag_probabilities, image_names = output_queue.get() tag_probabilities = tag_probabilities.tolist() for per_image_tag_probabilities,image_name in zip(tag_probabilities, image_names, strict=True): this_image_tags = [] this_image_tag_probabilities = [] for index, per_tag_probability in enumerate(per_image_tag_probabilities): if per_tag_probability > 0.3: tag = allowed_tags[index] if "placeholder" not in tag: this_image_tags.append(tag) this_image_tag_probabilities.append(str(int(round(per_tag_probability, 3) * 1000))) image_row = [image_name," ".join(this_image_tags)," ".join(this_image_tag_probabilities)] writer.writerow(image_row) def set_seed(seed: int = 42) -> None: np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) # When running on the CuDNN backend, two further options must be set torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Set a fixed value for the hash seed print(f"Random seed set as {seed}") if __name__ == "__main__": steps = 0 output_file_name = "your_file.csv" set_seed() multiprocessing.set_start_method('spawn') output_queue = multiprocessing.Queue() tagging_is_running = multiprocessing.Queue(maxsize=5) tagging_is_running.put("Running!") # initialize the computation device if torch.cuda.is_available(): device = torch.device('cuda') else: raise RuntimeError("CUDA is not available!") model = prepare_model().to("cuda") batch_size = 128 # read the training csv file train_csv = pd.read_csv('/path/to/a/list/of/files/and/their/extensions.csv') # train dataset train_data = ImageDataset( train_csv, train=True ) train_loader = DataLoader( train_data, batch_size=batch_size, shuffle=False, num_workers=6, pin_memory=True ) process_writer = multiprocessing.Process(target=tag_writer, args=(tagging_is_running, output_queue, output_file_name)) process_writer.start() process_tagger = multiprocessing.Process(target=train, args=(tagging_is_running, model, train_loader, train_data, output_queue,)) process_tagger.start() process_writer.join() process_tagger.join()