import json import time from PIL import Image import torch from torchvision.transforms import transforms model = torch.load('/path/to/your/model.pth').to("cuda") model.eval() transform = transforms.Compose([ transforms.Resize((448, 448)), transforms.ToTensor(), transforms.Normalize(mean=[ 0.48145466, 0.4578275, 0.40821073 ], std=[ 0.26862954, 0.26130258, 0.27577711 ]) ]) with open("tags_8041.json", "r") as file: tags = json.load(file) allowed_tags = sorted(tags) allowed_tags.insert(0, "placeholder0") allowed_tags.append("placeholder1") allowed_tags.append("explicit") allowed_tags.append("questionable") allowed_tags.append("safe") image_path = "/path/to/your/image.jpg" start = time.time() img = Image.open(image_path).convert('RGB') tensor = transform(img).unsqueeze(0).to("cuda") with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.sigmoid(out[0]) indices = torch.where(probabilities > 0.3)[0] values = probabilities[indices] for i in range(indices.size(0)): print(allowed_tags[indices[i]], values[i].item()) end = time.time() print(f'Executed in {end - start} seconds') print("\n\n", end="")