--- language: - en license: mit tags: - convAI - conversational - ASR license_link: https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE widget: - text: Hello who are you? example_title: Identity - text: What can you do? example_title: Capabilities - text: Create a fastapi endpoint to retrieve the weather given a zip code. example_title: Coding pipeline_tag: text-generation --- # Disclaimer THIS PROJECT IS STILL IN WIP # Phi-2-audio-super Base Model: [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) Fine-tuned version of [abacaj/phi-2-super](https://huggingface.co/abacaj/phi-2-super) for ASR on [librispeech_asr](https://huggingface.co/datasets/librispeech_asr). ## How to run inference for text only: ```python import transformers import torch if __name__ == "__main__": model_name = "Thytu/phi-2-audio-super" tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) model = ( transformers.AutoModelForCausalLM.from_pretrained( model_name, ) .to("cuda:0") .eval() ) # Exactly like for phi-2-super :D messages = [ {"role": "user", "content": "Hello, who are you?"} ] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device) input_ids_cutoff = inputs.size(dim=1) with torch.no_grad(): generated_ids = model.generate( input_ids=inputs, use_cache=True, max_new_tokens=512, temperature=0.2, top_p=0.95, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) completion = tokenizer.decode( generated_ids[0][input_ids_cutoff:], skip_special_tokens=True, ) print(completion) ``` ## How to run inference for ASR: TODO