File size: 6,243 Bytes
54f8141 6b727fa 54f8141 b4b6604 54f8141 b4b6604 54f8141 b4b6604 54f8141 b4b6604 54f8141 b4b6604 54f8141 b4b6604 54f8141 b4b6604 6df769b b4b6604 6df769b b4b6604 6df769b b4b6604 6df769b b4b6604 6df769b b4b6604 6df769b 7e674ad 6b727fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
---
language:
- zh
- en
license: apache-2.0
model-index:
- name: tigerbot-70b-base
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.46
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.61
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.49
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.76
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.76
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base
name: Open LLM Leaderboard
---
<div style="width: 100%;">
<p align="center" width="20%">
<img src="http://x-pai.algolet.com/bot/img/logo_core.png" alt="TigerBot" width="20%", style="display: block; margin: auto;"></img>
</p>
</div>
<p align="center">
<font face="黑体" size=5"> A cutting-edge foundation for your very own LLM. </font>
</p>
<p align="center">
💻<a href="https://github.com/TigerResearch/TigerBot" target="_blank">Github</a> • 🌐 <a href="https://tigerbot.com/" target="_blank">TigerBot</a> • 🤗 <a href="https://huggingface.co/TigerResearch" target="_blank">Hugging Face</a>
</p>
# 快速开始
- 方法1,通过transformers使用
- 下载 TigerBot Repo
```shell
git clone https://github.com/TigerResearch/TigerBot.git
```
- 启动infer代码
```shell
python infer.py --model_path TigerResearch/tigerbot-70b-base-v1 --model_type base
```
- 方法2:
- 下载 TigerBot Repo
```shell
git clone https://github.com/TigerResearch/TigerBot.git
```
- 安装git lfs: `git lfs install`
- 通过huggingface或modelscope平台下载权重
```shell
git clone https://huggingface.co/TigerResearch/tigerbot-70b-base-v1
git clone https://www.modelscope.cn/TigerResearch/tigerbot-70b-base-v1.git
```
- 启动infer代码
```shell
python infer.py --model_path tigerbot-70b-base-v1 --model_type base
```
------
# Quick Start
- Method 1, use through transformers
- Clone TigerBot Repo
```shell
git clone https://github.com/TigerResearch/TigerBot.git
```
- Run infer script
```shell
python infer.py --model_path TigerResearch/tigerbot-70b-base-v1 --model_type base
```
- Method 2:
- Clone TigerBot Repo
```shell
git clone https://github.com/TigerResearch/TigerBot.git
```
- install git lfs: `git lfs install`
- Download weights from huggingface or modelscope
```shell
git clone https://huggingface.co/TigerResearch/tigerbot-70b-base-v1
git clone https://www.modelscope.cn/TigerResearch/tigerbot-70b-base-v1.git
```
- Run infer script
```shell
python infer.py --model_path tigerbot-70b-base-v1 --model_type base
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TigerResearch__tigerbot-70b-base)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 62.1 |
| ARC (25-shot) | 62.46 |
| HellaSwag (10-shot) | 83.61 |
| MMLU (5-shot) | 65.49 |
| TruthfulQA (0-shot) | 52.76 |
| Winogrande (5-shot) | 80.19 |
| GSM8K (5-shot) | 37.76 |
| DROP (3-shot) | 52.45 |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TigerResearch__tigerbot-70b-base)
| Metric |Value|
|---------------------------------|----:|
|Avg. |63.71|
|AI2 Reasoning Challenge (25-Shot)|62.46|
|HellaSwag (10-Shot) |83.61|
|MMLU (5-Shot) |65.49|
|TruthfulQA (0-shot) |52.76|
|Winogrande (5-shot) |80.19|
|GSM8k (5-shot) |37.76|
|