File size: 6,243 Bytes
54f8141
 
 
 
6b727fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54f8141
 
b4b6604
 
 
54f8141
 
 
 
 
b4b6604
54f8141
 
b4b6604
54f8141
b4b6604
54f8141
b4b6604
54f8141
b4b6604
 
 
54f8141
b4b6604
 
 
6df769b
b4b6604
 
 
 
 
 
 
 
 
 
 
 
 
 
6df769b
 
b4b6604
 
 
 
 
6df769b
b4b6604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6df769b
b4b6604
 
 
 
 
 
 
 
 
 
 
 
 
 
6df769b
 
b4b6604
 
 
 
 
6df769b
7e674ad
 
 
 
 
 
 
 
 
 
 
 
 
 
6b727fa
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
language:
- zh
- en
license: apache-2.0
model-index:
- name: tigerbot-70b-base
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 62.46
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.61
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.49
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 52.76
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 80.19
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 37.76
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base
      name: Open LLM Leaderboard
---
<div style="width: 100%;">
    <p align="center" width="20%">
      <img src="http://x-pai.algolet.com/bot/img/logo_core.png" alt="TigerBot" width="20%", style="display: block; margin: auto;"></img>
    </p>
</div>
<p align="center">
<font face="黑体" size=5"> A cutting-edge foundation for your very own LLM. </font>
</p>
<p align="center">
	💻<a href="https://github.com/TigerResearch/TigerBot" target="_blank">Github</a> • 🌐 <a href="https://tigerbot.com/" target="_blank">TigerBot</a> • 🤗 <a href="https://huggingface.co/TigerResearch" target="_blank">Hugging Face</a>
</p>

# 快速开始

- 方法1,通过transformers使用

  - 下载 TigerBot Repo

     ```shell
     git clone https://github.com/TigerResearch/TigerBot.git
     ```

  - 启动infer代码

    ```shell
    python infer.py --model_path TigerResearch/tigerbot-70b-base-v1 --model_type base
    ```

- 方法2:

  - 下载 TigerBot Repo
    
     ```shell
    git clone https://github.com/TigerResearch/TigerBot.git
    ```

  - 安装git lfs: `git lfs install`

  - 通过huggingface或modelscope平台下载权重
    ```shell
    git clone https://huggingface.co/TigerResearch/tigerbot-70b-base-v1
    git clone https://www.modelscope.cn/TigerResearch/tigerbot-70b-base-v1.git
    ```
    
  - 启动infer代码
    
    ```shell
    python infer.py --model_path tigerbot-70b-base-v1 --model_type base
    ```

------

# Quick Start

- Method 1, use through transformers

  - Clone TigerBot Repo

     ```shell
     git clone https://github.com/TigerResearch/TigerBot.git
     ```

  - Run infer script

    ```shell
    python infer.py --model_path TigerResearch/tigerbot-70b-base-v1 --model_type base
    ```

- Method 2:

  - Clone TigerBot Repo

    ```shell
    git clone https://github.com/TigerResearch/TigerBot.git
    ```

  - install git lfs: `git lfs install`

  - Download weights from huggingface or modelscope
    ```shell
    git clone https://huggingface.co/TigerResearch/tigerbot-70b-base-v1
    git clone https://www.modelscope.cn/TigerResearch/tigerbot-70b-base-v1.git
    ```
  
  - Run infer script
  
     ```shell
     python infer.py --model_path tigerbot-70b-base-v1 --model_type base
     ```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TigerResearch__tigerbot-70b-base)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 62.1   |
| ARC (25-shot)         | 62.46          |
| HellaSwag (10-shot)   | 83.61    |
| MMLU (5-shot)         | 65.49         |
| TruthfulQA (0-shot)   | 52.76   |
| Winogrande (5-shot)   | 80.19   |
| GSM8K (5-shot)        | 37.76        |
| DROP (3-shot)         | 52.45         |

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TigerResearch__tigerbot-70b-base)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |63.71|
|AI2 Reasoning Challenge (25-Shot)|62.46|
|HellaSwag (10-Shot)              |83.61|
|MMLU (5-Shot)                    |65.49|
|TruthfulQA (0-shot)              |52.76|
|Winogrande (5-shot)              |80.19|
|GSM8k (5-shot)                   |37.76|