--- language: - zh - en license: apache-2.0 model-index: - name: tigerbot-70b-base results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.46 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.61 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 52.76 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.19 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 37.76 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-70b-base name: Open LLM Leaderboard ---
A cutting-edge foundation for your very own LLM.
💻Github • 🌐 TigerBot • 🤗 Hugging Face
# 快速开始 - 方法1,通过transformers使用 - 下载 TigerBot Repo ```shell git clone https://github.com/TigerResearch/TigerBot.git ``` - 启动infer代码 ```shell python infer.py --model_path TigerResearch/tigerbot-70b-base-v1 --model_type base ``` - 方法2: - 下载 TigerBot Repo ```shell git clone https://github.com/TigerResearch/TigerBot.git ``` - 安装git lfs: `git lfs install` - 通过huggingface或modelscope平台下载权重 ```shell git clone https://huggingface.co/TigerResearch/tigerbot-70b-base-v1 git clone https://www.modelscope.cn/TigerResearch/tigerbot-70b-base-v1.git ``` - 启动infer代码 ```shell python infer.py --model_path tigerbot-70b-base-v1 --model_type base ``` ------ # Quick Start - Method 1, use through transformers - Clone TigerBot Repo ```shell git clone https://github.com/TigerResearch/TigerBot.git ``` - Run infer script ```shell python infer.py --model_path TigerResearch/tigerbot-70b-base-v1 --model_type base ``` - Method 2: - Clone TigerBot Repo ```shell git clone https://github.com/TigerResearch/TigerBot.git ``` - install git lfs: `git lfs install` - Download weights from huggingface or modelscope ```shell git clone https://huggingface.co/TigerResearch/tigerbot-70b-base-v1 git clone https://www.modelscope.cn/TigerResearch/tigerbot-70b-base-v1.git ``` - Run infer script ```shell python infer.py --model_path tigerbot-70b-base-v1 --model_type base ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TigerResearch__tigerbot-70b-base) | Metric | Value | |-----------------------|---------------------------| | Avg. | 62.1 | | ARC (25-shot) | 62.46 | | HellaSwag (10-shot) | 83.61 | | MMLU (5-shot) | 65.49 | | TruthfulQA (0-shot) | 52.76 | | Winogrande (5-shot) | 80.19 | | GSM8K (5-shot) | 37.76 | | DROP (3-shot) | 52.45 | # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TigerResearch__tigerbot-70b-base) | Metric |Value| |---------------------------------|----:| |Avg. |63.71| |AI2 Reasoning Challenge (25-Shot)|62.46| |HellaSwag (10-Shot) |83.61| |MMLU (5-Shot) |65.49| |TruthfulQA (0-shot) |52.76| |Winogrande (5-shot) |80.19| |GSM8k (5-shot) |37.76|