Sri Kanthavel
commited on
Commit
•
27a687f
1
Parent(s):
6b10493
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.28 +/- 0.12
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98da4439cf23233b0155c6e36792bf528403c2d08cdd140f361ccdcd7d0f114a
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ac704922710>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ac704919fc0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1691833355430448867,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXh5qPqpZ07tdSc4+8j4FvjUhTj/nGjU/Xh5qPqpZ07tdSc4+Xh5qPqpZ07tdSc4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqelUP6ULtb6BXI0/Xk0Sv05okT43U5k/b28gP7Q5Iz8cr/E+rj1jv+tTrD/oicQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABeHmo+qlnTu11Jzj7MmdY+VKc4uaERuD7yPgW+NSFOP+caNT/IpgZA8QqVvaf/yD9eHmo+qlnTu11Jzj7MmdY+VKc4uaERuD5eHmo+qlnTu11Jzj7MmdY+VKc4uaERuD6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.22863147 -0.0064499 0.40290347]\n [-0.13012293 0.8051942 0.70744175]\n [ 0.22863147 -0.0064499 0.40290347]\n [ 0.22863147 -0.0064499 0.40290347]]",
|
34 |
+
"desired_goal": "[[ 0.8316904 -0.35360447 1.1043855 ]\n [-0.571493 0.2839989 1.197852 ]\n [ 0.62670034 0.63759923 0.4720391 ]\n [-0.8876599 1.346311 1.5354586 ]]",
|
35 |
+
"observation": "[[ 2.2863147e-01 -6.4498978e-03 4.0290347e-01 4.1914213e-01\n -1.7609942e-04 3.5950950e-01]\n [-1.3012293e-01 8.0519420e-01 7.0744175e-01 2.1039295e+00\n -7.2774775e-02 1.5703019e+00]\n [ 2.2863147e-01 -6.4498978e-03 4.0290347e-01 4.1914213e-01\n -1.7609942e-04 3.5950950e-01]\n [ 2.2863147e-01 -6.4498978e-03 4.0290347e-01 4.1914213e-01\n -1.7609942e-04 3.5950950e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOsyPusB7T7xyxy89ABoAvm1BFT6CDJw8DcxTvcGwDj6J1T4+JieaOnt7DT4zSx8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.00109709 -0.01266378 0.04291482]\n [-0.12509918 0.14575739 0.01904893]\n [-0.05170827 0.13934614 0.18636145]\n [ 0.00117609 0.13816635 0.1555603 ]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9jZ7HAAQxyMAWyUSwSMAXSUR0CnfQwU5+6RdX2UKGgGR7/A482aUiY+aAdLAmgIR0CnfiYA80UHdX2UKGgGR7/McMmWt2cKaAdLA2gIR0Cnfc8jRlYmdX2UKGgGR7/RM1TBInSfaAdLA2gIR0CnfRvoePq+dX2UKGgGR7/BhESdvsJIaAdLAmgIR0Cnfi+t0V8DdX2UKGgGR7+mCdz4k/r0aAdLAWgIR0CnfdUGmk30dX2UKGgGR7/htjLB9Cu2aAdLBmgIR0CnfXnh86V/dX2UKGgGR7+76P8yeqaPaAdLAmgIR0Cnfjv4VRDUdX2UKGgGR7/RMfzSThYOaAdLA2gIR0CnfSzC+De1dX2UKGgGR7/Oy8BdUsFuaAdLA2gIR0CnfeVOsT37dX2UKGgGR7/Pmgam4y44aAdLA2gIR0CnfYoESuhcdX2UKGgGR7/OnUlRgqmTaAdLA2gIR0CnfkkF4cFRdX2UKGgGR7/GxJNCZ4OdaAdLA2gIR0CnffOWBz3idX2UKGgGR7/at2s7uDzzaAdLBWgIR0CnfUZZjhDPdX2UKGgGR7++TJQtSQ5naAdLAmgIR0Cnff7EYO2BdX2UKGgGR7/bZ+x4Y77saAdLBWgIR0CnfaPUKArhdX2UKGgGR7/SGnGbTc7AaAdLBGgIR0Cnfl7FCLMtdX2UKGgGR7+g5ggHNX5naAdLAWgIR0CnfmMjmjj8dX2UKGgGR7/QeizsyBTXaAdLA2gIR0CnfVPmHP/rdX2UKGgGR7/Ti+tbLU1AaAdLA2gIR0CnfgxzaK1pdX2UKGgGR7/OPbwjMV1waAdLA2gIR0Cnfhw0waisdX2UKGgGR7/gIXbdrO7haAdLBmgIR0CnfcETxoZidX2UKGgGR7/gqDK5kK/maAdLBWgIR0CnfW3BguyvdX2UKGgGR7/Ka5PM0P6LaAdLA2gIR0Cnfi2wV0tAdX2UKGgGR7/U0OEug6EKaAdLBGgIR0Cnfde9alk6dX2UKGgGR7/JOeJ53TuwaAdLA2gIR0CnfX8bBGhFdX2UKGgGR7/AXLvCuU2UaAdLAmgIR0Cnfje6I3zddX2UKGgGR7/A7GvOhTOxaAdLAmgIR0Cnfj/Yao/BdX2UKGgGR7/U7tAs052haAdLA2gIR0CnfYvStvGZdX2UKGgGR7+c0tRNyo4uaAdLAWgIR0CnfkbMPjGUdX2UKGgGR7/wrdSEUTL4aAdLDWgIR0CnfqaAe7tidX2UKGgGR7/XMPz4DcM3aAdLBWgIR0Cnfe/lIVdpdX2UKGgGR7+/mZE2Hck/aAdLAmgIR0Cnfq7DMvAXdX2UKGgGR7/OgTRIBikPaAdLA2gIR0CnflPs7dSEdX2UKGgGR7/UT238XN1RaAdLBGgIR0CnfZ/ixVyWdX2UKGgGR7/H+1jRUm2LaAdLA2gIR0CnffzMqz7edX2UKGgGR7+8k4WDYh+waAdLAmgIR0Cnfl5nL7oCdX2UKGgGR7+720zCUHIIaAdLAmgIR0CnfaqjSG8FdX2UKGgGR7/FjYqXnhbXaAdLA2gIR0Cnfr7gjyFxdX2UKGgGR7+2nm7rcCYDaAdLAmgIR0CnfsrkCFK1dX2UKGgGR7/SH+6y0KJEaAdLA2gIR0Cnfm/0Eov0dX2UKGgGR7/PPrOZ9d/saAdLBGgIR0CnfhSuIRAbdX2UKGgGR7/HeRgZ0jkdaAdLA2gIR0CnfbyH/LkkdX2UKGgGR7/Oyon8baRIaAdLA2gIR0CnftqgAZKndX2UKGgGR7/VcnE2pAD8aAdLA2gIR0Cnfn9/jKgadX2UKGgGR7/QLJjlPrOaaAdLA2gIR0CnfcucMEzPdX2UKGgGR7/RLhrFfiPyaAdLBGgIR0CnfiinHeabdX2UKGgGR7+0iNbTtsvaaAdLAmgIR0CnfohN21UmdX2UKGgGR7/P0Lc9GI9DaAdLBGgIR0Cnfu5iExqPdX2UKGgGR7/FHskY4yXVaAdLA2gIR0CnfjeyquKXdX2UKGgGR7/Z+fh/Aj6faAdLBGgIR0CnfpumJm/WdX2UKGgGR7/hUr08NhE0aAdLBmgIR0CnfelPacqfdX2UKGgGR7+KnR9gF5fMaAdLAWgIR0Cnfe5p8F6idX2UKGgGR7/VnLaEi+tbaAdLBGgIR0CnfwI5HVgAdX2UKGgGR7/QbCrLhaTwaAdLA2gIR0Cnfq05+6RRdX2UKGgGR7/gjHfdhy80aAdLBWgIR0CnflHnU2DQdX2UKGgGR7++y5Zr56+naAdLAmgIR0Cnfwy+xnnMdX2UKGgGR7/YcOby6MBIaAdLBWgIR0CnfgcX3xnWdX2UKGgGR7/HyMDOkcjraAdLA2gIR0CnfxsIeHSGdX2UKGgGR7/CHLRrrPdEaAdLAmgIR0CnfyXDWK/EdX2UKGgGR7/f6wt8NQTFaAdLBmgIR0Cnfm9/z8P4dX2UKGgGR7/TOBDohY/3aAdLA2gIR0CnfhbsniNsdX2UKGgGR7+ccZLqUu+RaAdLAWgIR0CnfnPnr6cidX2UKGgGR7/AvHtF8XvZaAdLAmgIR0Cnfy8ZUDMedX2UKGgGR7+xUtI065oXaAdLAmgIR0Cnfnx+jM3ZdX2UKGgGR7/OZuQ6p5u7aAdLA2gIR0CnfiPhAGB4dX2UKGgGR7/Omplz2exwaAdLA2gIR0CnfjMz/IbPdX2UKGgGR7/SFnqVyFPBaAdLBGgIR0CnfpIZQ53ldX2UKGgGR7/fjebd8Aq/aAdLB2gIR0Cnf1k4NqgzdX2UKGgGR7/zvZRKpT/AaAdLD2gIR0Cnfv8fV7QcdX2UKGgGR7+9rBTGYKIBaAdLAmgIR0Cnfw3mV7hOdX2UKGgGR7/aBAOavzOHaAdLBGgIR0CnfrN8eCCjdX2UKGgGR7/Uh/Aj6eoUaAdLBGgIR0Cnf3jaGpMpdX2UKGgGR7/iLaufVZs9aAdLB2gIR0CnfmwOFxn4dX2UKGgGR7/JK7I1cdHUaAdLA2gIR0Cnfyk4vN/wdX2UKGgGR7/WAsTWXkYGaAdLA2gIR0Cnfs7Rv3rVdX2UKGgGR7/NqREF4cFRaAdLA2gIR0CnfuROUMXrdX2UKGgGR7/cag2606YFaAdLBGgIR0Cnfox7zCk5dX2UKGgGR7/TeNT987ZGaAdLBWgIR0Cnf6FSKm8/dX2UKGgGR7/dY8uBczInaAdLBGgIR0Cnf0bvXsgMdX2UKGgGR7+f/FR51Ng0aAdLAWgIR0CnfpRbbDdhdX2UKGgGR7/U75mAbyYpaAdLA2gIR0Cnfv1oxpL3dX2UKGgGR7+VkhA4XGfgaAdLAWgIR0CnfwTD4xk/dX2UKGgGR7/UZDiOvMbFaAdLBGgIR0Cnf8HFo+OfdX2UKGgGR7/XLTx5LRKIaAdLBGgIR0CnfrSKm8/VdX2UKGgGR7+72f029+PSaAdLAmgIR0Cnf9YpUgjhdX2UKGgGR7/gODzyz5XVaAdLBmgIR0Cnf3u4XoC/dX2UKGgGR7/VJtzjm0VraAdLBGgIR0CnfykETxoadX2UKGgGR7/KvYe1a4c4aAdLA2gIR0CnftFN1yNodX2UKGgGR7/HwdbPhQ3xaAdLA2gIR0Cnf+2RzRx+dX2UKGgGR7+6w6hg3LmqaAdLAmgIR0CnfziPIXCTdX2UKGgGR7+6v0RODaoNaAdLAmgIR0CnfuCngpBpdX2UKGgGR7/VWJaaCtihaAdLBGgIR0Cnf5rbpNbkdX2UKGgGR7/Oynk1dgOSaAdLA2gIR0CngAf4h2W6dX2UKGgGR7/M/MW43FUAaAdLA2gIR0Cnf1KXOW0JdX2UKGgGR7/S9WIXTEzgaAdLA2gIR0Cnfvqu0TlDdX2UKGgGR7/RjuKGcnVoaAdLA2gIR0Cnf7SzXz19dX2UKGgGR7/D9LpRoAXEaAdLA2gIR0CngBx0uDjBdX2UKGgGR7/UYbsF+uvEaAdLA2gIR0Cnf2cT8HfNdX2UKGgGR7/T3Zf2K2roaAdLA2gIR0Cnfw8V58jSdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1561e837f9399d8d4367a29a2306ce3415f2b9c77e12b39265e79ddef256ac3
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c451f92f0cf74c246466d5e8642715d3c5a2a76144b7739e280e17585017ac3b
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ac704922710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ac704919fc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691833355430448867, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXh5qPqpZ07tdSc4+8j4FvjUhTj/nGjU/Xh5qPqpZ07tdSc4+Xh5qPqpZ07tdSc4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqelUP6ULtb6BXI0/Xk0Sv05okT43U5k/b28gP7Q5Iz8cr/E+rj1jv+tTrD/oicQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABeHmo+qlnTu11Jzj7MmdY+VKc4uaERuD7yPgW+NSFOP+caNT/IpgZA8QqVvaf/yD9eHmo+qlnTu11Jzj7MmdY+VKc4uaERuD5eHmo+qlnTu11Jzj7MmdY+VKc4uaERuD6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.22863147 -0.0064499 0.40290347]\n [-0.13012293 0.8051942 0.70744175]\n [ 0.22863147 -0.0064499 0.40290347]\n [ 0.22863147 -0.0064499 0.40290347]]", "desired_goal": "[[ 0.8316904 -0.35360447 1.1043855 ]\n [-0.571493 0.2839989 1.197852 ]\n [ 0.62670034 0.63759923 0.4720391 ]\n [-0.8876599 1.346311 1.5354586 ]]", "observation": "[[ 2.2863147e-01 -6.4498978e-03 4.0290347e-01 4.1914213e-01\n -1.7609942e-04 3.5950950e-01]\n [-1.3012293e-01 8.0519420e-01 7.0744175e-01 2.1039295e+00\n -7.2774775e-02 1.5703019e+00]\n [ 2.2863147e-01 -6.4498978e-03 4.0290347e-01 4.1914213e-01\n -1.7609942e-04 3.5950950e-01]\n [ 2.2863147e-01 -6.4498978e-03 4.0290347e-01 4.1914213e-01\n -1.7609942e-04 3.5950950e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOsyPusB7T7xyxy89ABoAvm1BFT6CDJw8DcxTvcGwDj6J1T4+JieaOnt7DT4zSx8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00109709 -0.01266378 0.04291482]\n [-0.12509918 0.14575739 0.01904893]\n [-0.05170827 0.13934614 0.18636145]\n [ 0.00117609 0.13816635 0.1555603 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9jZ7HAAQxyMAWyUSwSMAXSUR0CnfQwU5+6RdX2UKGgGR7/A482aUiY+aAdLAmgIR0CnfiYA80UHdX2UKGgGR7/McMmWt2cKaAdLA2gIR0Cnfc8jRlYmdX2UKGgGR7/RM1TBInSfaAdLA2gIR0CnfRvoePq+dX2UKGgGR7/BhESdvsJIaAdLAmgIR0Cnfi+t0V8DdX2UKGgGR7+mCdz4k/r0aAdLAWgIR0CnfdUGmk30dX2UKGgGR7/htjLB9Cu2aAdLBmgIR0CnfXnh86V/dX2UKGgGR7+76P8yeqaPaAdLAmgIR0Cnfjv4VRDUdX2UKGgGR7/RMfzSThYOaAdLA2gIR0CnfSzC+De1dX2UKGgGR7/Oy8BdUsFuaAdLA2gIR0CnfeVOsT37dX2UKGgGR7/Pmgam4y44aAdLA2gIR0CnfYoESuhcdX2UKGgGR7/OnUlRgqmTaAdLA2gIR0CnfkkF4cFRdX2UKGgGR7/GxJNCZ4OdaAdLA2gIR0CnffOWBz3idX2UKGgGR7/at2s7uDzzaAdLBWgIR0CnfUZZjhDPdX2UKGgGR7++TJQtSQ5naAdLAmgIR0Cnff7EYO2BdX2UKGgGR7/bZ+x4Y77saAdLBWgIR0CnfaPUKArhdX2UKGgGR7/SGnGbTc7AaAdLBGgIR0Cnfl7FCLMtdX2UKGgGR7+g5ggHNX5naAdLAWgIR0CnfmMjmjj8dX2UKGgGR7/QeizsyBTXaAdLA2gIR0CnfVPmHP/rdX2UKGgGR7/Ti+tbLU1AaAdLA2gIR0CnfgxzaK1pdX2UKGgGR7/OPbwjMV1waAdLA2gIR0Cnfhw0waisdX2UKGgGR7/gIXbdrO7haAdLBmgIR0CnfcETxoZidX2UKGgGR7/gqDK5kK/maAdLBWgIR0CnfW3BguyvdX2UKGgGR7/Ka5PM0P6LaAdLA2gIR0Cnfi2wV0tAdX2UKGgGR7/U0OEug6EKaAdLBGgIR0Cnfde9alk6dX2UKGgGR7/JOeJ53TuwaAdLA2gIR0CnfX8bBGhFdX2UKGgGR7/AXLvCuU2UaAdLAmgIR0Cnfje6I3zddX2UKGgGR7/A7GvOhTOxaAdLAmgIR0Cnfj/Yao/BdX2UKGgGR7/U7tAs052haAdLA2gIR0CnfYvStvGZdX2UKGgGR7+c0tRNyo4uaAdLAWgIR0CnfkbMPjGUdX2UKGgGR7/wrdSEUTL4aAdLDWgIR0CnfqaAe7tidX2UKGgGR7/XMPz4DcM3aAdLBWgIR0Cnfe/lIVdpdX2UKGgGR7+/mZE2Hck/aAdLAmgIR0Cnfq7DMvAXdX2UKGgGR7/OgTRIBikPaAdLA2gIR0CnflPs7dSEdX2UKGgGR7/UT238XN1RaAdLBGgIR0CnfZ/ixVyWdX2UKGgGR7/H+1jRUm2LaAdLA2gIR0CnffzMqz7edX2UKGgGR7+8k4WDYh+waAdLAmgIR0Cnfl5nL7oCdX2UKGgGR7+720zCUHIIaAdLAmgIR0CnfaqjSG8FdX2UKGgGR7/FjYqXnhbXaAdLA2gIR0Cnfr7gjyFxdX2UKGgGR7+2nm7rcCYDaAdLAmgIR0CnfsrkCFK1dX2UKGgGR7/SH+6y0KJEaAdLA2gIR0Cnfm/0Eov0dX2UKGgGR7/PPrOZ9d/saAdLBGgIR0CnfhSuIRAbdX2UKGgGR7/HeRgZ0jkdaAdLA2gIR0CnfbyH/LkkdX2UKGgGR7/Oyon8baRIaAdLA2gIR0CnftqgAZKndX2UKGgGR7/VcnE2pAD8aAdLA2gIR0Cnfn9/jKgadX2UKGgGR7/QLJjlPrOaaAdLA2gIR0CnfcucMEzPdX2UKGgGR7/RLhrFfiPyaAdLBGgIR0CnfiinHeabdX2UKGgGR7+0iNbTtsvaaAdLAmgIR0CnfohN21UmdX2UKGgGR7/P0Lc9GI9DaAdLBGgIR0Cnfu5iExqPdX2UKGgGR7/FHskY4yXVaAdLA2gIR0CnfjeyquKXdX2UKGgGR7/Z+fh/Aj6faAdLBGgIR0CnfpumJm/WdX2UKGgGR7/hUr08NhE0aAdLBmgIR0CnfelPacqfdX2UKGgGR7+KnR9gF5fMaAdLAWgIR0Cnfe5p8F6idX2UKGgGR7/VnLaEi+tbaAdLBGgIR0CnfwI5HVgAdX2UKGgGR7/QbCrLhaTwaAdLA2gIR0Cnfq05+6RRdX2UKGgGR7/gjHfdhy80aAdLBWgIR0CnflHnU2DQdX2UKGgGR7++y5Zr56+naAdLAmgIR0Cnfwy+xnnMdX2UKGgGR7/YcOby6MBIaAdLBWgIR0CnfgcX3xnWdX2UKGgGR7/HyMDOkcjraAdLA2gIR0CnfxsIeHSGdX2UKGgGR7/CHLRrrPdEaAdLAmgIR0CnfyXDWK/EdX2UKGgGR7/f6wt8NQTFaAdLBmgIR0Cnfm9/z8P4dX2UKGgGR7/TOBDohY/3aAdLA2gIR0CnfhbsniNsdX2UKGgGR7+ccZLqUu+RaAdLAWgIR0CnfnPnr6cidX2UKGgGR7/AvHtF8XvZaAdLAmgIR0Cnfy8ZUDMedX2UKGgGR7+xUtI065oXaAdLAmgIR0Cnfnx+jM3ZdX2UKGgGR7/OZuQ6p5u7aAdLA2gIR0CnfiPhAGB4dX2UKGgGR7/Omplz2exwaAdLA2gIR0CnfjMz/IbPdX2UKGgGR7/SFnqVyFPBaAdLBGgIR0CnfpIZQ53ldX2UKGgGR7/fjebd8Aq/aAdLB2gIR0Cnf1k4NqgzdX2UKGgGR7/zvZRKpT/AaAdLD2gIR0Cnfv8fV7QcdX2UKGgGR7+9rBTGYKIBaAdLAmgIR0Cnfw3mV7hOdX2UKGgGR7/aBAOavzOHaAdLBGgIR0CnfrN8eCCjdX2UKGgGR7/Uh/Aj6eoUaAdLBGgIR0Cnf3jaGpMpdX2UKGgGR7/iLaufVZs9aAdLB2gIR0CnfmwOFxn4dX2UKGgGR7/JK7I1cdHUaAdLA2gIR0Cnfyk4vN/wdX2UKGgGR7/WAsTWXkYGaAdLA2gIR0Cnfs7Rv3rVdX2UKGgGR7/NqREF4cFRaAdLA2gIR0CnfuROUMXrdX2UKGgGR7/cag2606YFaAdLBGgIR0Cnfox7zCk5dX2UKGgGR7/TeNT987ZGaAdLBWgIR0Cnf6FSKm8/dX2UKGgGR7/dY8uBczInaAdLBGgIR0Cnf0bvXsgMdX2UKGgGR7+f/FR51Ng0aAdLAWgIR0CnfpRbbDdhdX2UKGgGR7/U75mAbyYpaAdLA2gIR0Cnfv1oxpL3dX2UKGgGR7+VkhA4XGfgaAdLAWgIR0CnfwTD4xk/dX2UKGgGR7/UZDiOvMbFaAdLBGgIR0Cnf8HFo+OfdX2UKGgGR7/XLTx5LRKIaAdLBGgIR0CnfrSKm8/VdX2UKGgGR7+72f029+PSaAdLAmgIR0Cnf9YpUgjhdX2UKGgGR7/gODzyz5XVaAdLBmgIR0Cnf3u4XoC/dX2UKGgGR7/VJtzjm0VraAdLBGgIR0CnfykETxoadX2UKGgGR7/KvYe1a4c4aAdLA2gIR0CnftFN1yNodX2UKGgGR7/HwdbPhQ3xaAdLA2gIR0Cnf+2RzRx+dX2UKGgGR7+6w6hg3LmqaAdLAmgIR0CnfziPIXCTdX2UKGgGR7+6v0RODaoNaAdLAmgIR0CnfuCngpBpdX2UKGgGR7/VWJaaCtihaAdLBGgIR0Cnf5rbpNbkdX2UKGgGR7/Oynk1dgOSaAdLA2gIR0CngAf4h2W6dX2UKGgGR7/M/MW43FUAaAdLA2gIR0Cnf1KXOW0JdX2UKGgGR7/S9WIXTEzgaAdLA2gIR0Cnfvqu0TlDdX2UKGgGR7/RjuKGcnVoaAdLA2gIR0Cnf7SzXz19dX2UKGgGR7/D9LpRoAXEaAdLA2gIR0CngBx0uDjBdX2UKGgGR7/UYbsF+uvEaAdLA2gIR0Cnf2cT8HfNdX2UKGgGR7/T3Zf2K2roaAdLA2gIR0Cnfw8V58jSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (791 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.2784251609817147, "std_reward": 0.12187607658265268, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-12T10:34:37.897245"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9148dd2405833f0553a80fc706f0012d699a80c70525416f1ffd7183acd95ec
|
3 |
+
size 2623
|