ppo-test-unit1-RLcourse
Browse files- README.md +4 -4
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +23 -23
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/pytorch_variables.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +5 -5
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
-
- name: PPO
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
@@ -16,13 +16,13 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
-
# **PPO
|
25 |
-
This is a trained model of a **PPO
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
+
- name: PPO
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 262.59 +/- 13.90
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe415ecb370>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe415ecb400>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe415ecb490>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe415ecb520>", "_build": "<function ActorCriticPolicy._build at 0x7fe415ecb5b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe415ecb640>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe415ecb6d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe415ecb760>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe415ecb7f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe415ecb880>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe415ecb910>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe415ecb9a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe3ce5a1fc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684967043076598723, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANrcHj79m9Q+u1pEvpeezL7GiTc9OEn5vQAAAAAAAAAAmgtZPEhlsT//4ik/9owRvw9GV7xqGd69AAAAAAAAAAAagbw9x1VBPmkhFr65J6e+XTjEuz7SlrwAAAAAAAAAABpuD71bQCE/bpCCPa16377UUIO9GqRCPQAAAAAAAAAAM1yiPXvGl7qliKo4969IMxF54rr+F8S3AACAPwAAgD/ma2O93bsnP9C7pz2TiO2+JPQ+vdXIrD0AAAAAAAAAAAavEj7XBTS7bIoBu8zP1zc9bYq8RfIXOgAAAAAAAAAAjQqkPZ6Lxz4S6p29YLXUvhXPcD2Ljj68AAAAAAAAAAAzAVc8pTMqPggI9Tx+Mtm+TogIPtI6jr0AAAAAAAAAAM3IlTumFLQ/TQ3tPgHeN77aV627i8jWvQAAAAAAAAAA8y6TvR6lxz6LYJ0+dVH3vnHUAj5aq/o9AAAAAAAAAACaOca8vGdYPYV36j3PUN6+tb0cPgxyBb0AAAAAAAAAAAD4MLu6RWU/zG66vGJj8r4LekG9XxwzPQAAAAAAAAAAEDVmvocbF71yPHu9H/8avPXThD4mTeU8AAAAAAAAgD8AIF+6FEezPwgt67z/bDe+dkiAOprC0jsAAAAAAAAAAGbm8zvsRaG79ewsOtNwijzpNBu9Q3drPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/cFnyup0iMAWyUS9qMAXSUR0DGiea9RJmNdX2UKGgGR0BwUSs5n13/aAdLz2gIR0DGifAtFrmAdX2UKGgGR0BxxbhYNiH7aAdLzmgIR0DGify8nNPhdX2UKGgGR0BxApQN0/4ZaAdL0GgIR0DGif0olUqAdX2UKGgGR0Bz8/9hqj8DaAdLx2gIR0DGigCyY5T7dX2UKGgGR0ByFC9sabWmaAdL0GgIR0DGig6By0a7dX2UKGgGR0BxA8176YVqaAdL02gIR0DGiiYUeuFIdX2UKGgGR0By507hegL7aAdL3GgIR0DGiiraRISUdX2UKGgGR0Bz+ko5PuXvaAdL5mgIR0DGiipBNVR2dX2UKGgGR0BzNd3Y+Sr6aAdLzGgIR0DGijtSbYsedX2UKGgGR0BysheRgZ0kaAdL3mgIR0DGikRxxT86dX2UKGgGR0Bxpwkt29teaAdL2WgIR0DGilGfAbhndX2UKGgGR0ByhR6lchTwaAdL4WgIR0DGilmdsi0OdX2UKGgGR0By8XvphWo4aAdL6WgIR0DGimVVaOghdX2UKGgGR0BuH7QzDXOGaAdL2GgIR0DGimogzP8idX2UKGgGR0Byaerfcer/aAdL3mgIR0DGioElqrR0dX2UKGgGR0BzAKiAUcn3aAdL2GgIR0DGioboZAIIdX2UKGgGR0BzG17mdRR/aAdL+GgIR0DGipE3EQ5FdX2UKGgGR0Bv5z8pCrtFaAdL02gIR0DGipUuYhMbdX2UKGgGR0Bx8wf9xZMdaAdLyGgIR0DGipzh1klNdX2UKGgGR0BtSNCTlkpaaAdL6GgIR0DGiqEAR02cdX2UKGgGR0By2oTEit7saAdL7WgIR0DGiqQKhL5AdX2UKGgGR0ByKFD2JzkqaAdL12gIR0DGisCIWP92dX2UKGgGR0BxHnsOXmeUaAdL4mgIR0DGiseC2+fzdX2UKGgGR0Bx7zGNrCWNaAdL8WgIR0DGis4pDu0DdX2UKGgGR0Bxpwzj3mFKaAdLy2gIR0DGjQkPBi1BdX2UKGgGR0Bx8RTZQHiWaAdL62gIR0DGjRHwsoUjdX2UKGgGR0Byu9XOnl4kaAdLumgIR0DGjRHuqm0mdX2UKGgGR0BxXk2eg+QmaAdNCAFoCEdAxo0ckIHC43V9lChoBkdAcZOt8/lhgGgHS89oCEdAxo0lko4MnnV9lChoBkdAchiVY6nzhGgHS+loCEdAxo0nwc5sCXV9lChoBkdAcd4bNbC79WgHS81oCEdAxo07ObAk9nV9lChoBkdAcdQFBIFvAGgHS+RoCEdAxo1RAsTWXnV9lChoBkdAcQ+uAZsKs2gHS9RoCEdAxo1S+ZgG8nV9lChoBkdAczC8JD3M6mgHS+poCEdAxo1qESM983V9lChoBkdAcxKpn6Eal2gHS+hoCEdAxo1tD4xk/nV9lChoBkdAcEAoM8YAKmgHS+VoCEdAxo1uOFQEZHV9lChoBkdAc0tFSsKb8WgHTQ4BaAhHQMaNepjUd7x1fZQoaAZHQG8ZytV7x/doB0vPaAhHQMaNfa42CNF1fZQoaAZHQG32bUXpGF1oB0vRaAhHQMaNhinpB5Z1fZQoaAZHQHHtwGbCrLhoB0vhaAhHQMaNmEfs/pt1fZQoaAZHQHL9J8rqdH5oB0vVaAhHQMaNovQOWjZ1fZQoaAZHQHGPbHZK3/hoB0vcaAhHQMaNsW6shgV1fZQoaAZHQHCn2x+rlvJoB0voaAhHQMaNuzb349J1fZQoaAZHQHDIJCWu5jJoB0vbaAhHQMaNvZ8BuGd1fZQoaAZHQHPfbc45tFdoB0vUaAhHQMaNwzuF6Ax1fZQoaAZHQHFX3qu8sc1oB0vSaAhHQMaNxDtw71Z1fZQoaAZHQHJLKvaDf3xoB0vgaAhHQMaN6rJr+Hd1fZQoaAZHQFCfILw4KhNoB0uXaAhHQMaN94rrgO11fZQoaAZHQHOW6rNnoPloB0vVaAhHQMaN/XBguyx1fZQoaAZHQHPTvybx3FFoB0vMaAhHQMaOGiYCyQh1fZQoaAZHQHFr6ZlWfbtoB0vvaAhHQMaOGez+m3x1fZQoaAZHQHO+8XSBshxoB0vcaAhHQMaOJgoPTXt1fZQoaAZHQHLqOB19v0hoB0v6aAhHQMaOSkTxoZh1fZQoaAZHQHJvINqgyuZoB0vlaAhHQMaOSfhVENR1fZQoaAZHQHCMI86mwaBoB0vUaAhHQMaOXbWNFSd1fZQoaAZHQHILu1WsA/9oB0vraAhHQMaOXGRNh3J1fZQoaAZHQHFqlpKzzEtoB0vWaAhHQMaOg9v863l1fZQoaAZHQHDZsl5WzWxoB0vPaAhHQMaOkWKEWZZ1fZQoaAZHQHJ9hc/t6X1oB0v8aAhHQMaOl4Vh1DB1fZQoaAZHQHObFnZkCmxoB0vdaAhHQMaOmVo6CDp1fZQoaAZHQHOsyCjDbahoB0vmaAhHQMaOplMZgoh1fZQoaAZHQHKrQ2606YFoB0v6aAhHQMaOsuq3mV91fZQoaAZHQHOOzbi6xxFoB0vQaAhHQMaOu/dIoVp1fZQoaAZHQHFxWJvYODtoB0vWaAhHQMaOzlvAGjd1fZQoaAZHQHGMl+mWMS9oB0vqaAhHQMaO6uAZsKt1fZQoaAZHQHDuhRVIZqFoB0vVaAhHQMaO9DlHSWt1fZQoaAZHQHCzfkWAPNFoB0vVaAhHQMaPAeSB9Th1fZQoaAZHQECShYeT3ZhoB0ujaAhHQMaPBlGwzLx1fZQoaAZHQG/4Ve0G/vhoB0vmaAhHQMaPBlSCOFR1fZQoaAZHQHN8g3gk1MxoB0vXaAhHQMaPKkc81XN1fZQoaAZHQHDc6HKwIMVoB0vOaAhHQMaPNPYe1a51fZQoaAZHQHLh1Wn0kGBoB0vraAhHQMaPQQD3dsV1fZQoaAZHQHO0p3os7MhoB0vMaAhHQMaPcxIatLd1fZQoaAZHQHI8i7K7qY9oB0vjaAhHQMaPd3a8HwB1fZQoaAZHQHHmnOryUcJoB0vRaAhHQMaPesNMGot1fZQoaAZHQHE4F0xM361oB0vdaAhHQMaPf2JJoTR1fZQoaAZHQHHcOvdM0xdoB0vQaAhHQMaPl6J66at1fZQoaAZHQHKBkrbxmTVoB0vuaAhHQMaPqxLsa891fZQoaAZHQHGo3g5zYEpoB0vZaAhHQMaPq6UJOWV1fZQoaAZHQHNW6J66aspoB0vcaAhHQMaPxWK/Efl1fZQoaAZHQHHNOoP07KdoB0vTaAhHQMaP19yksSV1fZQoaAZHQHLxutCAtnRoB0vbaAhHQMaP6ezMRpV1fZQoaAZHQHLrNelbeM1oB0vUaAhHQMaP9OkLx7R1fZQoaAZHQHN56+i8FpxoB0vgaAhHQMaQAuQ6p5x1fZQoaAZHQHKEkOZssQNoB0vpaAhHQMaQCI7Njb11fZQoaAZHQHFcT9GZuyhoB0vGaAhHQMaQCpGFzuF1fZQoaAZHQHNU8yvcJt1oB0vIaAhHQMaQFepOvdN1fZQoaAZHQHM/9SEUTL5oB0vEaAhHQMaQO6wMYuV1fZQoaAZHQHOxlYQrc0toB0vPaAhHQMaQSdE9dNZ1fZQoaAZHQHMIfpMYdhloB00NAWgIR0DGkE93r2QGdX2UKGgGR0BxK1tO2y9maAdL3GgIR0DGkFEX531SdX2UKGgGR0ByP/ABT4tZaAdLz2gIR0DGkFmZof0VdX2UKGgGR0Bw1YQf6oETaAdL+GgIR0DGkF8rTYukdX2UKGgGR0ByHpOk+HJtaAdLz2gIR0DGkGWMuOCHdX2UKGgGR0BzdjhcZ9/jaAdL2GgIR0DGkGtO2y9mdX2UKGgGR0BwETvjOs1baAdL4WgIR0DGkIBoysS1dX2UKGgGR0BxJy1y/9HdaAdL0GgIR0DGkKPUDuBudX2UKGgGR0BvCUu6ErXlaAdL42gIR0DGkKYbfgrIdX2UKGgGR0ByKVLYf4h2aAdL/WgIR0DGkKYi9qUNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 744, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d915539b9c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d915539ba60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d915539bb00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d915539bba0>", "_build": "<function ActorCriticPolicy._build at 0x7d915539bc40>", "forward": "<function ActorCriticPolicy.forward at 0x7d915539bce0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d915539bd80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d915539be20>", "_predict": "<function ActorCriticPolicy._predict at 0x7d915539bec0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d915539bf60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d91553a4040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d91553a40e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d9155318e40>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737708796886010235, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOb1ND0KgiW7ekCgvPqhpDwaQMe5BufOPAAAgD8AAIA/QNkVPomqFj/DcUm9JrKCvp/1eD1dkIA8AAAAAAAAAABzynm+JCFDP+jxvjxC/b++pO1Jvu0yUD4AAAAAAAAAAKZlnT0fPw8/kkgFvl/Nkb6WcAU9zYRxvQAAAAAAAAAAwLG/PY/aKbowrI47BDlTOL7Pp7tIaz65AACAPwAAAAAdAm2+eJtTP7jY870lytG+t1NevudRujwAAAAAAAAAAMA0xL1D4gY/wz1cPmdYir7YomI9QpeXPQAAAAAAAAAAwA2bPVKpAz6B4iW+NetRvmgvw726urw8AAAAAAAAAADNjQu90hizPyR1pr4MkzC+nFmju8JmkL0AAAAAAAAAAM1Q1juWfyI9Jst0vFX6Jb5a4vG8WKI5PQAAAAAAAAAAJuSQPVl0Nz5LRdi8wzxYvrvMUjxC4k+8AAAAAAAAAAD6KS6+nLlFvGNyTLva25W5rlC7PQ5LdzoAAIA/AACAP1b6ar6LcUA/1JywvSCCqr6LEky+WcafPQAAAAAAAAAA1kyWvoLlYz8Rrcu9xhfKvulZg76QxVE+AAAAAAAAAAAzQao8gCWHP4zMC7ybUdW+WCJ0PSmgQLwAAAAAAAAAALMasL2Fkd27TQ7WPBRTfT1kXAO8yvQivAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzwDZDiOvOMAWyUTZQBjAF0lEdAkKPwEdNnG3V9lChoBkdAb/HzJZGKAWgHTY8CaAhHQJCkQzhxYJV1fZQoaAZHQHH8oh2W6bxoB00KAWgIR0CQpJy/sVtXdX2UKGgGR0BxdPQY1pCbaAdNyAFoCEdAkKUowVTJhnV9lChoBkdAcaOF98Z1m2gHTRYBaAhHQJCpRhAnlXB1fZQoaAZHQGuhHPmgam5oB01LAWgIR0CQqYB5HEuQdX2UKGgGR0BwV530PH1faAdNKgFoCEdAkMDLzwtrbnV9lChoBkdAbiL6Mzdk8WgHTT8BaAhHQJDBBL127nR1fZQoaAZHQHFqWH58BuJoB009AmgIR0CQwTdvsJIEdX2UKGgGR0ByCiBZpztDaAdN6wFoCEdAkMFLIDHOr3V9lChoBkdAcApe5WilBWgHTS4BaAhHQJDBd8pkPMB1fZQoaAZHQG3cQ40dilVoB00lAWgIR0CQwcrftQbddX2UKGgGR0Bvm8+eOGTLaAdNLQFoCEdAkMMP3WWhRXV9lChoBkdAczUhje9BbGgHTUkBaAhHQJDDoS5AhSt1fZQoaAZHQG46pSrHU+doB01+AWgIR0CQxQjk+5e7dX2UKGgGR0BvVRz7uUliaAdNWQFoCEdAkMUyt7rs0HV9lChoBkdAbsoEB8x9HGgHTQ4DaAhHQJDFS49X9zh1fZQoaAZHQG03pbUwztVoB03pAWgIR0CQx5X+l0o0dX2UKGgGR0BxT8DYAbQ1aAdNMwFoCEdAkMhQztTkyXV9lChoBkdAb7ceeWfK6mgHTT0BaAhHQJDIcTRIBil1fZQoaAZHQG28p8WsRxtoB00OA2gIR0CQyViQ1aW5dX2UKGgGR0BvR8BuGbkPaAdNEQFoCEdAkMonoC+10HV9lChoBkdAcsGxbjcVQGgHTTADaAhHQJDKfovBacJ1fZQoaAZHQHGSl+Zw4sFoB00qAWgIR0CQy247zTWodX2UKGgGR0BuV0Y2sJY1aAdNaAFoCEdAkMyesLfDUHV9lChoBkdAbYOAJ9iMHmgHTUUBaAhHQJDNjXtjTa11fZQoaAZHQHDAYA0bcXZoB02EAWgIR0CQzfGNrCWNdX2UKGgGR0Bv6FgWrOqvaAdNGQFoCEdAkM4QC0WuYHV9lChoBkdAcPi+bmU4aWgHTZEBaAhHQJDOM0WM0gt1fZQoaAZHQG4hE0aZQYVoB00fAWgIR0CQzn71ZkkKdX2UKGgGR0BvLldLQHAzaAdNYAFoCEdAkM7vD1oQF3V9lChoBkdAcLpv/zasZGgHTScBaAhHQJDRFVbRne11fZQoaAZHQHD/wm/nGKhoB02UAWgIR0CQ0jwkxASndX2UKGgGR0BvN2Mju8braAdNNwFoCEdAkNKAzk6tDHV9lChoBkdAbRnM5fdAPmgHTRYCaAhHQJDTBBRhttR1fZQoaAZHQGu7+7UXpGFoB00rAWgIR0CQ0z8kD6nBdX2UKGgGR0Byi6djG1hLaAdNXgFoCEdAkNPnq7iAD3V9lChoBkdAb6P+NLlFMWgHTQ4BaAhHQJDUVFDv3Jx1fZQoaAZHQG1UMr/bTMJoB01JAWgIR0CQ1VOYYzi0dX2UKGgGR0Btvf0qYqoZaAdNBgFoCEdAkNdPWUbDM3V9lChoBkdAcwPRAKOT7mgHTS0BaAhHQJDXr7N0NjN1fZQoaAZHQHJXk5dWyTpoB02hAWgIR0CQ2DctXgccdX2UKGgGR0BuUJ/mT1TSaAdNPwFoCEdAkNkLzkIX03V9lChoBkdAcD1uuRs/IWgHTVgBaAhHQJDZpxyXD3x1fZQoaAZHQHFmjUExIrhoB01WAWgIR0CQ2bSkTHsDdX2UKGgGR0Buji5PM0P6aAdNPgFoCEdAkNnX8sMAm3V9lChoBkdAbsWTdLxqf2gHTS8BaAhHQJDbfbblA/t1fZQoaAZHQG1IggPmPo5oB000AWgIR0CQ3Lab4Ju3dX2UKGgGR0BshbNW2gFpaAdNJAFoCEdAkNzhpL26CnV9lChoBkdAb9gs8PnSv2gHTSABaAhHQJDc/qoqCpZ1fZQoaAZHQG/JlXA/LTxoB00DAmgIR0CQ3eEORT0hdX2UKGgGR0BtcpyXD3ueaAdNXAFoCEdAkN4soQWepXV9lChoBkdAcGTSgXdj5WgHTVMBaAhHQJDfPv0AcT91fZQoaAZHQHAtLbcoH9poB01aAWgIR0CQ9MKSxJNCdX2UKGgGR0Bw5dpItlI3aAdNGgFoCEdAkPVA8bJfY3V9lChoBkdAcAcSfDk2gmgHTTgBaAhHQJD10t16mfp1fZQoaAZHQGxg0FKTSstoB00dAWgIR0CQ9iuvllshdX2UKGgGR0BwVC2fChvjaAdNFwFoCEdAkPaH+qBEr3V9lChoBkdAcBEa4c3l0mgHTWEBaAhHQJD22ebutwJ1fZQoaAZHQHIu1w5vLoxoB00lAWgIR0CQ9yPWQOnVdX2UKGgGR0BwIbaXa8HwaAdN1QFoCEdAkPfCB06o2nV9lChoBkdAcj95LRKHwmgHTUcBaAhHQJD39hJAdGR1fZQoaAZHQHJcOU6gdwNoB00OAWgIR0CQ+Qfe1rqMdX2UKGgGR0Bw5MGB4D9waAdNLgFoCEdAkPnNtEXtSnV9lChoBkdAbwWYgJTl1mgHTScBaAhHQJD52jVQQ+V1fZQoaAZHQHGVZ1q33HtoB02XAWgIR0CQ+6hsZYPodX2UKGgGR0BwnsmTkhicaAdNSQFoCEdAkPvXbRF7U3V9lChoBkdAcLeOUdJaq2gHTRoBaAhHQJD9iY6XBxh1fZQoaAZHQG2UvTXrdFhoB00pAWgIR0CQ/Zmplz2fdX2UKGgGR0Bw/1tbcGkfaAdNoQFoCEdAkP5o0/GEPHV9lChoBkdAbs29cry1/mgHTSoBaAhHQJD+98E3bVV1fZQoaAZHQHC8WYa5wwVoB00wAWgIR0CQ/4dGiHqNdX2UKGgGR0BwSmJ/G2kSaAdL/2gIR0CQ/4xoZhrndX2UKGgGR0BvoUf3evZAaAdNOwFoCEdAkQCDPGACn3V9lChoBkdAcRYrcCYCyWgHTSwBaAhHQJEAutMfzSV1fZQoaAZHQHJRQF1SwW5oB01pAWgIR0CRAZ8La24NdX2UKGgGR0BwZekcjqwAaAdNGQFoCEdAkQGuMyad+XV9lChoBkdAbftj81n/UGgHTTQBaAhHQJEDYNBnjAB1fZQoaAZHQHCVJzYEnstoB005AWgIR0CRA5Q3PzFudX2UKGgGR0Bx+ckka/ATaAdNAwFoCEdAkQQbtVrAQHV9lChoBkdAcA05X2dupGgHTR0BaAhHQJEGrQE6kqN1fZQoaAZHQG+xle4TbnJoB00rAWgIR0CRCBfvnbItdX2UKGgGR0BxNJhPTG5uaAdL+mgIR0CRCQCrtE5RdX2UKGgGR0BxT6hnJ1aGaAdNagFoCEdAkQmdgKF7D3V9lChoBkdAcmH+Yc/+sGgHTV8BaAhHQJELs3Q2MsJ1fZQoaAZHQHFu7KvFFUhoB00dAWgIR0CRC8sHSncddX2UKGgGR0BySQx0uDjBaAdN9wFoCEdAkQ0wWnCO3nV9lChoBkdAcVZbyH2ys2gHTSQBaAhHQJEOtmBe5Wl1fZQoaAZHQHCYGGh24d9oB005AWgIR0CRD1lg+hXbdX2UKGgGR0BwuwvHtF8YaAdNJgFoCEdAkQ+XlS0jT3V9lChoBkdAcI3XEIgNgGgHTRMDaAhHQJEQW4G2TgV1fZQoaAZHQHFyTXOGCZpoB00fAmgIR0CRFA4fOlfrdX2UKGgGR0BxIem+CbtraAdNAQJoCEdAkRQdLL6k7HV9lChoBkdAcZFi9qUNa2gHTUACaAhHQJEU2PtD2J11fZQoaAZHQG40Vfu1F6RoB00TAWgIR0CRFb9ehPCVdX2UKGgGR0BwBRcPe54GaAdNQgFoCEdAkRYxu89Oh3V9lChoBkdAcRWV6u4gBGgHTS0BaAhHQJEWPq1PWQR1fZQoaAZHQFt+4m1IAfdoB03oA2gIR0CRFm/+bVjJdX2UKGgGR0BwY3/m1YyPaAdNBwFoCEdAkRczqv/za3V9lChoBkdAbwqrQw9JSWgHTR8BaAhHQJEYKO+7Dl51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e28d90dfcbb3e814f6e6be232c7b2296834cd5a751f40d0d6e2b4f7a0bd26dd6
|
3 |
+
size 148132
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,38 +4,38 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
-
"verbose":
|
23 |
"policy_kwargs": {},
|
24 |
"num_timesteps": 1015808,
|
25 |
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
@@ -45,16 +45,16 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -69,7 +69,7 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
@@ -87,13 +87,13 @@
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d915539b9c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d915539ba60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d915539bb00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d915539bba0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d915539bc40>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d915539bce0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d915539bd80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d915539be20>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d915539bec0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d915539bf60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d91553a4040>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d91553a40e0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d9155318e40>"
|
21 |
},
|
22 |
+
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
24 |
"num_timesteps": 1015808,
|
25 |
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1737708796886010235,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOb1ND0KgiW7ekCgvPqhpDwaQMe5BufOPAAAgD8AAIA/QNkVPomqFj/DcUm9JrKCvp/1eD1dkIA8AAAAAAAAAABzynm+JCFDP+jxvjxC/b++pO1Jvu0yUD4AAAAAAAAAAKZlnT0fPw8/kkgFvl/Nkb6WcAU9zYRxvQAAAAAAAAAAwLG/PY/aKbowrI47BDlTOL7Pp7tIaz65AACAPwAAAAAdAm2+eJtTP7jY870lytG+t1NevudRujwAAAAAAAAAAMA0xL1D4gY/wz1cPmdYir7YomI9QpeXPQAAAAAAAAAAwA2bPVKpAz6B4iW+NetRvmgvw726urw8AAAAAAAAAADNjQu90hizPyR1pr4MkzC+nFmju8JmkL0AAAAAAAAAAM1Q1juWfyI9Jst0vFX6Jb5a4vG8WKI5PQAAAAAAAAAAJuSQPVl0Nz5LRdi8wzxYvrvMUjxC4k+8AAAAAAAAAAD6KS6+nLlFvGNyTLva25W5rlC7PQ5LdzoAAIA/AACAP1b6ar6LcUA/1JywvSCCqr6LEky+WcafPQAAAAAAAAAA1kyWvoLlYz8Rrcu9xhfKvulZg76QxVE+AAAAAAAAAAAzQao8gCWHP4zMC7ybUdW+WCJ0PSmgQLwAAAAAAAAAALMasL2Fkd27TQ7WPBRTfT1kXAO8yvQivAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzwDZDiOvOMAWyUTZQBjAF0lEdAkKPwEdNnG3V9lChoBkdAb/HzJZGKAWgHTY8CaAhHQJCkQzhxYJV1fZQoaAZHQHH8oh2W6bxoB00KAWgIR0CQpJy/sVtXdX2UKGgGR0BxdPQY1pCbaAdNyAFoCEdAkKUowVTJhnV9lChoBkdAcaOF98Z1m2gHTRYBaAhHQJCpRhAnlXB1fZQoaAZHQGuhHPmgam5oB01LAWgIR0CQqYB5HEuQdX2UKGgGR0BwV530PH1faAdNKgFoCEdAkMDLzwtrbnV9lChoBkdAbiL6Mzdk8WgHTT8BaAhHQJDBBL127nR1fZQoaAZHQHFqWH58BuJoB009AmgIR0CQwTdvsJIEdX2UKGgGR0ByCiBZpztDaAdN6wFoCEdAkMFLIDHOr3V9lChoBkdAcApe5WilBWgHTS4BaAhHQJDBd8pkPMB1fZQoaAZHQG3cQ40dilVoB00lAWgIR0CQwcrftQbddX2UKGgGR0Bvm8+eOGTLaAdNLQFoCEdAkMMP3WWhRXV9lChoBkdAczUhje9BbGgHTUkBaAhHQJDDoS5AhSt1fZQoaAZHQG46pSrHU+doB01+AWgIR0CQxQjk+5e7dX2UKGgGR0BvVRz7uUliaAdNWQFoCEdAkMUyt7rs0HV9lChoBkdAbsoEB8x9HGgHTQ4DaAhHQJDFS49X9zh1fZQoaAZHQG03pbUwztVoB03pAWgIR0CQx5X+l0o0dX2UKGgGR0BxT8DYAbQ1aAdNMwFoCEdAkMhQztTkyXV9lChoBkdAb7ceeWfK6mgHTT0BaAhHQJDIcTRIBil1fZQoaAZHQG28p8WsRxtoB00OA2gIR0CQyViQ1aW5dX2UKGgGR0BvR8BuGbkPaAdNEQFoCEdAkMonoC+10HV9lChoBkdAcsGxbjcVQGgHTTADaAhHQJDKfovBacJ1fZQoaAZHQHGSl+Zw4sFoB00qAWgIR0CQy247zTWodX2UKGgGR0BuV0Y2sJY1aAdNaAFoCEdAkMyesLfDUHV9lChoBkdAbYOAJ9iMHmgHTUUBaAhHQJDNjXtjTa11fZQoaAZHQHDAYA0bcXZoB02EAWgIR0CQzfGNrCWNdX2UKGgGR0Bv6FgWrOqvaAdNGQFoCEdAkM4QC0WuYHV9lChoBkdAcPi+bmU4aWgHTZEBaAhHQJDOM0WM0gt1fZQoaAZHQG4hE0aZQYVoB00fAWgIR0CQzn71ZkkKdX2UKGgGR0BvLldLQHAzaAdNYAFoCEdAkM7vD1oQF3V9lChoBkdAcLpv/zasZGgHTScBaAhHQJDRFVbRne11fZQoaAZHQHD/wm/nGKhoB02UAWgIR0CQ0jwkxASndX2UKGgGR0BvN2Mju8braAdNNwFoCEdAkNKAzk6tDHV9lChoBkdAbRnM5fdAPmgHTRYCaAhHQJDTBBRhttR1fZQoaAZHQGu7+7UXpGFoB00rAWgIR0CQ0z8kD6nBdX2UKGgGR0Byi6djG1hLaAdNXgFoCEdAkNPnq7iAD3V9lChoBkdAb6P+NLlFMWgHTQ4BaAhHQJDUVFDv3Jx1fZQoaAZHQG1UMr/bTMJoB01JAWgIR0CQ1VOYYzi0dX2UKGgGR0Btvf0qYqoZaAdNBgFoCEdAkNdPWUbDM3V9lChoBkdAcwPRAKOT7mgHTS0BaAhHQJDXr7N0NjN1fZQoaAZHQHJXk5dWyTpoB02hAWgIR0CQ2DctXgccdX2UKGgGR0BuUJ/mT1TSaAdNPwFoCEdAkNkLzkIX03V9lChoBkdAcD1uuRs/IWgHTVgBaAhHQJDZpxyXD3x1fZQoaAZHQHFmjUExIrhoB01WAWgIR0CQ2bSkTHsDdX2UKGgGR0Buji5PM0P6aAdNPgFoCEdAkNnX8sMAm3V9lChoBkdAbsWTdLxqf2gHTS8BaAhHQJDbfbblA/t1fZQoaAZHQG1IggPmPo5oB000AWgIR0CQ3Lab4Ju3dX2UKGgGR0BshbNW2gFpaAdNJAFoCEdAkNzhpL26CnV9lChoBkdAb9gs8PnSv2gHTSABaAhHQJDc/qoqCpZ1fZQoaAZHQG/JlXA/LTxoB00DAmgIR0CQ3eEORT0hdX2UKGgGR0BtcpyXD3ueaAdNXAFoCEdAkN4soQWepXV9lChoBkdAcGTSgXdj5WgHTVMBaAhHQJDfPv0AcT91fZQoaAZHQHAtLbcoH9poB01aAWgIR0CQ9MKSxJNCdX2UKGgGR0Bw5dpItlI3aAdNGgFoCEdAkPVA8bJfY3V9lChoBkdAcAcSfDk2gmgHTTgBaAhHQJD10t16mfp1fZQoaAZHQGxg0FKTSstoB00dAWgIR0CQ9iuvllshdX2UKGgGR0BwVC2fChvjaAdNFwFoCEdAkPaH+qBEr3V9lChoBkdAcBEa4c3l0mgHTWEBaAhHQJD22ebutwJ1fZQoaAZHQHIu1w5vLoxoB00lAWgIR0CQ9yPWQOnVdX2UKGgGR0BwIbaXa8HwaAdN1QFoCEdAkPfCB06o2nV9lChoBkdAcj95LRKHwmgHTUcBaAhHQJD39hJAdGR1fZQoaAZHQHJcOU6gdwNoB00OAWgIR0CQ+Qfe1rqMdX2UKGgGR0Bw5MGB4D9waAdNLgFoCEdAkPnNtEXtSnV9lChoBkdAbwWYgJTl1mgHTScBaAhHQJD52jVQQ+V1fZQoaAZHQHGVZ1q33HtoB02XAWgIR0CQ+6hsZYPodX2UKGgGR0BwnsmTkhicaAdNSQFoCEdAkPvXbRF7U3V9lChoBkdAcLeOUdJaq2gHTRoBaAhHQJD9iY6XBxh1fZQoaAZHQG2UvTXrdFhoB00pAWgIR0CQ/Zmplz2fdX2UKGgGR0Bw/1tbcGkfaAdNoQFoCEdAkP5o0/GEPHV9lChoBkdAbs29cry1/mgHTSoBaAhHQJD+98E3bVV1fZQoaAZHQHC8WYa5wwVoB00wAWgIR0CQ/4dGiHqNdX2UKGgGR0BwSmJ/G2kSaAdL/2gIR0CQ/4xoZhrndX2UKGgGR0BvoUf3evZAaAdNOwFoCEdAkQCDPGACn3V9lChoBkdAcRYrcCYCyWgHTSwBaAhHQJEAutMfzSV1fZQoaAZHQHJRQF1SwW5oB01pAWgIR0CRAZ8La24NdX2UKGgGR0BwZekcjqwAaAdNGQFoCEdAkQGuMyad+XV9lChoBkdAbftj81n/UGgHTTQBaAhHQJEDYNBnjAB1fZQoaAZHQHCVJzYEnstoB005AWgIR0CRA5Q3PzFudX2UKGgGR0Bx+ckka/ATaAdNAwFoCEdAkQQbtVrAQHV9lChoBkdAcA05X2dupGgHTR0BaAhHQJEGrQE6kqN1fZQoaAZHQG+xle4TbnJoB00rAWgIR0CRCBfvnbItdX2UKGgGR0BxNJhPTG5uaAdL+mgIR0CRCQCrtE5RdX2UKGgGR0BxT6hnJ1aGaAdNagFoCEdAkQmdgKF7D3V9lChoBkdAcmH+Yc/+sGgHTV8BaAhHQJELs3Q2MsJ1fZQoaAZHQHFu7KvFFUhoB00dAWgIR0CRC8sHSncddX2UKGgGR0BySQx0uDjBaAdN9wFoCEdAkQ0wWnCO3nV9lChoBkdAcVZbyH2ys2gHTSQBaAhHQJEOtmBe5Wl1fZQoaAZHQHCYGGh24d9oB005AWgIR0CRD1lg+hXbdX2UKGgGR0BwuwvHtF8YaAdNJgFoCEdAkQ+XlS0jT3V9lChoBkdAcI3XEIgNgGgHTRMDaAhHQJEQW4G2TgV1fZQoaAZHQHFyTXOGCZpoB00fAmgIR0CRFA4fOlfrdX2UKGgGR0BxIem+CbtraAdNAQJoCEdAkRQdLL6k7HV9lChoBkdAcZFi9qUNa2gHTUACaAhHQJEU2PtD2J11fZQoaAZHQG40Vfu1F6RoB00TAWgIR0CRFb9ehPCVdX2UKGgGR0BwBRcPe54GaAdNQgFoCEdAkRYxu89Oh3V9lChoBkdAcRWV6u4gBGgHTS0BaAhHQJEWPq1PWQR1fZQoaAZHQFt+4m1IAfdoB03oA2gIR0CRFm/+bVjJdX2UKGgGR0BwY3/m1YyPaAdNBwFoCEdAkRczqv/za3V9lChoBkdAbwqrQw9JSWgHTR8BaAhHQJEYKO+7Dl51ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 248,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e27a371bed754eb2337238366448911ea0e1ba2ea34c2a34de6519f44ff3bb70
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5375dd3192962fa41956e01545428c3c0e437f001ba65caad08f03e60b67df33
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
- OS: Linux-
|
2 |
-
- Python: 3.
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
-
- PyTorch: 2.
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
-
- Cloudpickle:
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.11.11
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 262.5920689, "std_reward": 13.899024713835164, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-24T09:19:56.619257"}
|