|
|
|
"""Diffusion.ipynb |
|
|
|
Automatically generated by Colaboratory. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1bcJlVBYDIxhySq0b6YHyKsumLgIomNqf |
|
|
|
#Diffusion |
|
|
|
Setup |
|
""" |
|
|
|
!nvidia-smi |
|
|
|
!pip install diffusers==0.11.1 |
|
!pip install transformers scipy ftfy accelerate |
|
|
|
"""pipeline""" |
|
|
|
import torch |
|
from diffusers import StableDiffusionPipeline |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") |
|
|
|
|
|
pipe = pipe.to("cuda") |
|
|
|
|
|
prompt = "cute panda eating pizza on bamboo tree " |
|
image = pipe(prompt).images[0] |
|
|
|
image.save(f"Happy_panda.png") |
|
|
|
image |
|
|
|
import torch |
|
|
|
generator = torch.Generator("cuda").manual_seed(2048) |
|
|
|
image = pipe(prompt, generator=generator).images[0] |
|
|
|
image |
|
|
|
|
|
import torch |
|
|
|
generator = torch.Generator("cuda").manual_seed(2048) |
|
|
|
image = pipe(prompt, num_inference_steps=70, generator=generator).images[0] |
|
|
|
image |
|
|
|
from PIL import Image |
|
|
|
def image_grid(imgs, rows, cols): |
|
assert len(imgs) == rows*cols |
|
|
|
w, h = imgs[0].size |
|
grid = Image.new('RGB', size=(cols*w, rows*h)) |
|
grid_w, grid_h = grid.size |
|
|
|
for i, img in enumerate(imgs): |
|
grid.paste(img, box=(i%cols*w, i//cols*h)) |
|
return grid |
|
|
|
num_images = 3 |
|
prompt = ["cute panda eating pizza on bamboo tree "] * num_images |
|
|
|
images = pipe(prompt).images |
|
|
|
grid = image_grid(images, rows=1, cols=3) |
|
grid |
|
|
|
num_cols = 3 |
|
num_rows = 4 |
|
|
|
prompt = ["cute panda eating pizza on bamboo tree "] * num_cols |
|
|
|
all_images = [] |
|
for i in range(num_rows): |
|
images = pipe(prompt).images |
|
all_images.extend(images) |
|
|
|
grid = image_grid(all_images, rows=num_rows, cols=num_cols) |
|
grid |
|
|
|
|
|
prompt = "cute panda eating pizza on bamboo tree " |
|
|
|
image = pipe(prompt, height=512, width=752).images[0] |
|
image |
|
|
|
|