--- library_name: transformers language: - my license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - chuuhtetnaing/myanmar-speech-dataset-openslr-80 metrics: - wer model-index: - name: Whisper Large V3 Turbo Burmese Finetune results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Myanmar Speech Dataset (OpenSLR-80) type: chuuhtetnaing/myanmar-speech-dataset-openslr-80 args: 'config: my, split: test' metrics: - name: Wer type: wer value: 55.78806767586821 --- # Whisper Large V3 Turbo Burmese Finetune This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Myanmar Speech Dataset (OpenSLR-80) dataset. It achieves the following results on the evaluation set: - Loss: 0.2310 - Wer: 55.7881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.7755 | 1.0 | 143 | 0.3657 | 92.8317 | | 0.2954 | 2.0 | 286 | 0.2669 | 85.6189 | | 0.2483 | 3.0 | 429 | 0.2830 | 82.7248 | | 0.2332 | 4.0 | 572 | 0.2922 | 83.3927 | | 0.204 | 5.0 | 715 | 0.2338 | 78.8068 | | 0.1612 | 6.0 | 858 | 0.1876 | 74.8442 | | 0.1203 | 7.0 | 1001 | 0.1940 | 72.1728 | | 0.0919 | 8.0 | 1144 | 0.1639 | 65.8504 | | 0.0663 | 9.0 | 1287 | 0.1610 | 62.5557 | | 0.0461 | 10.0 | 1430 | 0.1633 | 63.2235 | | 0.0336 | 11.0 | 1573 | 0.1830 | 62.8228 | | 0.0238 | 12.0 | 1716 | 0.1777 | 60.5521 | | 0.0153 | 13.0 | 1859 | 0.1783 | 59.4835 | | 0.0099 | 14.0 | 2002 | 0.1945 | 58.2369 | | 0.0066 | 15.0 | 2145 | 0.2002 | 57.1683 | | 0.003 | 16.0 | 2288 | 0.2148 | 57.1683 | | 0.0015 | 17.0 | 2431 | 0.2241 | 55.9662 | | 0.0006 | 18.0 | 2574 | 0.2286 | 56.2778 | | 0.0003 | 19.0 | 2717 | 0.2296 | 55.8771 | | 0.0001 | 20.0 | 2860 | 0.2310 | 55.7881 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3