--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: multibertfinetuned1107 results: [] --- # multibertfinetuned1107 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5977 - Precision: 0.6463 - Recall: 0.6078 - F1: 0.6264 - Accuracy: 0.8835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 145 | 0.6113 | 0.6550 | 0.5854 | 0.6182 | 0.8735 | | No log | 2.0 | 290 | 0.6457 | 0.6270 | 0.5659 | 0.5949 | 0.8705 | | No log | 3.0 | 435 | 0.5977 | 0.6463 | 0.6078 | 0.6264 | 0.8835 | | 0.1409 | 4.0 | 580 | 0.6095 | 0.6752 | 0.6449 | 0.6597 | 0.8865 | | 0.1409 | 5.0 | 725 | 0.6566 | 0.6680 | 0.6380 | 0.6527 | 0.8851 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3