--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: multibertfinetuned1107 results: [] --- # multibertfinetuned1107 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5260 - Precision: 0.5933 - Recall: 0.4839 - F1: 0.5330 - Accuracy: 0.8502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 145 | 0.5260 | 0.5933 | 0.4839 | 0.5330 | 0.8502 | | No log | 2.0 | 290 | 0.5357 | 0.6099 | 0.5415 | 0.5736 | 0.8604 | | No log | 3.0 | 435 | 0.5476 | 0.6279 | 0.5795 | 0.6027 | 0.8715 | | 0.365 | 4.0 | 580 | 0.5861 | 0.6454 | 0.6107 | 0.6276 | 0.8827 | | 0.365 | 5.0 | 725 | 0.6235 | 0.6543 | 0.6185 | 0.6359 | 0.8804 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3