TontonAurel commited on
Commit
39ac7cf
·
1 Parent(s): efe26a2

First PPO model LunarLanderV2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.68 +/- 19.73
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc437c47160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc437c471f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc437c47280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc437c47310>", "_build": "<function ActorCriticPolicy._build at 0x7fc437c473a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc437c47430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc437c474c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc437c47550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc437c475e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc437c47670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc437c47700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc437c42600>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670419581529332964, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMrYLzs2fe5gzKbNnMExzFavUs5zQK8tQAAgD8AAIA/AM5QvI/efLptGnO6xK9ftq/MyLqSRI45AACAPwAAgD8av2m9i9E1P0Untz06Hla+fOibvFJ/vj0AAAAAAAAAABqWWT1EdbQ/Y/ohP/LCyr1AcCO8IAfZPQAAAAAAAAAA5tA0vY9+LrqTYsg6lyZKNhCgSDvagOm5AACAPwAAgD8NH2I+KkOmP6zLnj41hbm+0QqUPgCQlrsAAAAAAAAAAE3WBb5ygZE+havWPZ8pSr5NqMI8LfYXPQAAAAAAAAAAZkMxvcM5Grqq2246YaviNe1CdDqBIIy5AACAPwAAgD/mska9FLSquhxeCDlDyJq2aT+aOIBVkLUAAIA/AACAP2bwJT0pzFO6RWHqNyKELbJ28aO7mhQHtwAAgD8AAIA/AGYCPVyrfrpr5EQ7C+4rNqmFXLogGGa6AACAPwAAgD9m81g9j25xuqLcKrxmH502pU2MudVnEbYAAIA/AACAP83q9rx7xrW6V3YLOpZSA7a4hlE4a8weuQAAgD8AAIA/5n6xPXtU97hsua27HnVcOPVewzsm00Y4AACAPwAAAACaVhA9KcBEurvogTrLo4c2iPvpuc3cmbkAAIA/AACAP7Nngz0p+F26plVNO+FIYzglw0U7Ttb0uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGM3K9iGTYECUhpRSlIwBbJRN6AOMAXSUR0CSnNrleWv9dX2UKGgGaAloD0MI0LcFS/VAYUCUhpRSlGgVTegDaBZHQJKdK4smOVB1fZQoaAZoCWgPQwj99J81P7pgQJSGlFKUaBVN6ANoFkdAkp7TdtVJc3V9lChoBmgJaA9DCH+FzJXBTWdAlIaUUpRoFU3oA2gWR0CSoNd7v5P/dX2UKGgGaAloD0MIZoLhXEN8YkCUhpRSlGgVTegDaBZHQJKiejvd/KB1fZQoaAZoCWgPQwjvG1975uxgQJSGlFKUaBVN6ANoFkdAkqZehf0Eo3V9lChoBmgJaA9DCA9eu7RhQmNAlIaUUpRoFU3oA2gWR0CSqZEvTPSldX2UKGgGaAloD0MIKPOPvkmkX0CUhpRSlGgVTegDaBZHQJKz+fseGPB1fZQoaAZoCWgPQwiz0w/qIp5aQJSGlFKUaBVN6ANoFkdAktF265Gz8nV9lChoBmgJaA9DCI4Dr5Y7JGVAlIaUUpRoFU3oA2gWR0CS06JKaodddX2UKGgGaAloD0MI3PXSFIHqYECUhpRSlGgVTegDaBZHQJLZqaH9FWp1fZQoaAZoCWgPQwjbTlsjAshjQJSGlFKUaBVN6ANoFkdAkt3MnE2pAHV9lChoBmgJaA9DCE+TGW+rOmBAlIaUUpRoFU3oA2gWR0CS3fIQvpQldX2UKGgGaAloD0MIm8b2WtDkYkCUhpRSlGgVTegDaBZHQJLfs/pt78h1fZQoaAZoCWgPQwjY9KCglGViQJSGlFKUaBVN6ANoFkdAkuAimuTzNHV9lChoBmgJaA9DCL9+iA0Wmm9AlIaUUpRoFU0KA2gWR0CS45vnr6cidX2UKGgGaAloD0MIp8r3jEToXUCUhpRSlGgVTegDaBZHQJLqkgB91EF1fZQoaAZoCWgPQwgxJ2iTQyplQJSGlFKUaBVN6ANoFkdAkuuqb8WKuXV9lChoBmgJaA9DCESF6uZicmVAlIaUUpRoFU3oA2gWR0CS6+uYhMakdX2UKGgGaAloD0MIWipvR7h/Y0CUhpRSlGgVTegDaBZHQJLtXxmTTv11fZQoaAZoCWgPQwhPWyOCcUplQJSGlFKUaBVN6ANoFkdAkvC/wVj7RHV9lChoBmgJaA9DCBaFXRQ95FlAlIaUUpRoFU3oA2gWR0CS9HtxdY4idX2UKGgGaAloD0MIWRe30QCKZECUhpRSlGgVTegDaBZHQJL3eIvalDZ1fZQoaAZoCWgPQwhcVIuIYl9lQJSGlFKUaBVN6ANoFkdAkwD9tl7MPnV9lChoBmgJaA9DCLnDJjLzN2FAlIaUUpRoFU3oA2gWR0CTHjh8IAwPdX2UKGgGaAloD0MIRWYucHkPY0CUhpRSlGgVTegDaBZHQJMgQMtsen11fZQoaAZoCWgPQwgjZvZ5TCdxQJSGlFKUaBVNegJoFkdAkyRkb1h9cHV9lChoBmgJaA9DCARxHk7gn2VAlIaUUpRoFU3oA2gWR0CTJjfVZs9CdX2UKGgGaAloD0MIARO4dTd4cUCUhpRSlGgVTX0DaBZHQJMmgf4h2W91fZQoaAZoCWgPQwi77q1ITOpdQJSGlFKUaBVN6ANoFkdAkynt6kZaV3V9lChoBmgJaA9DCBg+IqZED2VAlIaUUpRoFU3oA2gWR0CTKg5TIeYEdX2UKGgGaAloD0MIHxK+9zflYECUhpRSlGgVTegDaBZHQJMrrYoRZlp1fZQoaAZoCWgPQwhR+GwdHPFhQJSGlFKUaBVN6ANoFkdAky9ghB7eEnV9lChoBmgJaA9DCDYdAdwsHkRAlIaUUpRoFU0CAWgWR0CTM7wt8NQTdX2UKGgGaAloD0MIoFBPH4HwXUCUhpRSlGgVTegDaBZHQJM2fCtRvWJ1fZQoaAZoCWgPQwijOh3Ies9iQJSGlFKUaBVN6ANoFkdAkzet4A0bcXV9lChoBmgJaA9DCBA7U+i8t2FAlIaUUpRoFU3oA2gWR0CTOZvsZ5zHdX2UKGgGaAloD0MIc/c5PtrNZECUhpRSlGgVTegDaBZHQJM9UWSEDhd1fZQoaAZoCWgPQwg4ns+AektdQJSGlFKUaBVN6ANoFkdAk0GAdOqNqHV9lChoBmgJaA9DCPrvwWsXm3FAlIaUUpRoFU1nAmgWR0CTQsWKMvRJdX2UKGgGaAloD0MI6rDCLZ/kY0CUhpRSlGgVTegDaBZHQJNEtGZuyeJ1fZQoaAZoCWgPQwjaBBiWPzNiQJSGlFKUaBVN6ANoFkdAk06jynUDuHV9lChoBmgJaA9DCBBAahPnRHBAlIaUUpRoFU3sAmgWR0CTaiTjebd8dX2UKGgGaAloD0MIvoi2Y2pKZUCUhpRSlGgVTegDaBZHQJNrnlT3qRl1fZQoaAZoCWgPQwhDA7Fs5glhQJSGlFKUaBVN6ANoFkdAk3FnO8kD6nV9lChoBmgJaA9DCGSV0jM9lGFAlIaUUpRoFU3oA2gWR0CTcw6v7m+1dX2UKGgGaAloD0MIILb0aKp1bkCUhpRSlGgVTZwCaBZHQJNzGws5GSZ1fZQoaAZoCWgPQwiZvAFmvvpkQJSGlFKUaBVN6ANoFkdAk3cPHT7VKHV9lChoBmgJaA9DCBvWVBaFFmVAlIaUUpRoFU3oA2gWR0CTd2vmozeodX2UKGgGaAloD0MI1uO+1TrWY0CUhpRSlGgVTegDaBZHQJN9QkiUxEh1fZQoaAZoCWgPQwju6lVkdGBfQJSGlFKUaBVN6ANoFkdAk4II4Ia99XV9lChoBmgJaA9DCERtG0ZBvFtAlIaUUpRoFU3oA2gWR0CThOWE9MbndX2UKGgGaAloD0MI3SIw1jeAZECUhpRSlGgVTegDaBZHQJOIAx1xKg91fZQoaAZoCWgPQwg4o+ar5FRyQJSGlFKUaBVNgwFoFkdAk4kz8DSw4nV9lChoBmgJaA9DCFxy3CmdI2VAlIaUUpRoFU3oA2gWR0CTi4Z/CqIadX2UKGgGaAloD0MI/Yf021d6Y0CUhpRSlGgVTegDaBZHQJOPcn+hoM91fZQoaAZoCWgPQwhSYAFMGRJlQJSGlFKUaBVN6ANoFkdAk5C6uB+WnnV9lChoBmgJaA9DCGfTEcDNOj1AlIaUUpRoFU0GAWgWR0CTkNpZwGW2dX2UKGgGaAloD0MI9WOT/AhNZECUhpRSlGgVTegDaBZHQJOSnIfbKzR1fZQoaAZoCWgPQwgj9DP1OiZiQJSGlFKUaBVN6ANoFkdAk5w8jFAE+3V9lChoBmgJaA9DCFeTp6ymh25AlIaUUpRoFU1KAWgWR0CTuJigTRICdX2UKGgGaAloD0MIBcWPMXeRbECUhpRSlGgVTV8DaBZHQJO43Eit7rt1fZQoaAZoCWgPQwgktOVcCillQJSGlFKUaBVN6ANoFkdAk7nuOCGvfXV9lChoBmgJaA9DCEc82c2MAWNAlIaUUpRoFU3oA2gWR0CTu24Ia99MdX2UKGgGaAloD0MI9fV8zXIyakCUhpRSlGgVTW0DaBZHQJPBKHk92X91fZQoaAZoCWgPQwh5knTN5AllQJSGlFKUaBVN6ANoFkdAk8QlEAo5P3V9lChoBmgJaA9DCI6R7BHqjGFAlIaUUpRoFU3oA2gWR0CTyC20iQkpdX2UKGgGaAloD0MIf9k9eVjuXkCUhpRSlGgVTegDaBZHQJPPAkxASnN1fZQoaAZoCWgPQwhHWipvR3JfQJSGlFKUaBVN6ANoFkdAk9hGLP2PDHV9lChoBmgJaA9DCOOpRxqc9nFAlIaUUpRoFU2zA2gWR0CT2F+HJtBOdX2UKGgGaAloD0MILUFGQIXlb0CUhpRSlGgVTSsDaBZHQJPaHFzdUKl1fZQoaAZoCWgPQwiuY1xxsdpwQJSGlFKUaBVNIQJoFkdAk9xTjaPCEnV9lChoBmgJaA9DCCEiNe3iOWFAlIaUUpRoFU3oA2gWR0CT3O1uBMBZdX2UKGgGaAloD0MIokRLHs9xYkCUhpRSlGgVTegDaBZHQJPfHxSYPXl1fZQoaAZoCWgPQwjsUE1JVv9iQJSGlFKUaBVN6ANoFkdAk+R4bfgrH3V9lChoBmgJaA9DCDzcDg2LO15AlIaUUpRoFU3oA2gWR0CT5k5HmRvFdX2UKGgGaAloD0MI/5JUppgRbECUhpRSlGgVTdgCaBZHQJPnbS1E3Kl1fZQoaAZoCWgPQwgOvFruTLthQJSGlFKUaBVN6ANoFkdAk+9EQXhwVHV9lChoBmgJaA9DCA3gLZCgYmNAlIaUUpRoFU3oA2gWR0CUCXi2lVLjdX2UKGgGaAloD0MIk9+ikyUPY0CUhpRSlGgVTegDaBZHQJQMOVcD8tR1fZQoaAZoCWgPQwibx2EwfyVuQJSGlFKUaBVNNwJoFkdAlAx6KHfuTnV9lChoBmgJaA9DCEzChTwCuGNAlIaUUpRoFU3oA2gWR0CUENODaoMsdX2UKGgGaAloD0MIHEKVmr3QYUCUhpRSlGgVTegDaBZHQJQT/HwPRRd1fZQoaAZoCWgPQwiq9BPOrqNwQJSGlFKUaBVNCAJoFkdAlBaGjTKDCnV9lChoBmgJaA9DCFiMutZebG9AlIaUUpRoFU3TAWgWR0CUFst4RmK7dX2UKGgGaAloD0MIEynN5nEebkCUhpRSlGgVTacCaBZHQJQX2eMAFPl1fZQoaAZoCWgPQwh+xoUDoU9mQJSGlFKUaBVN6ANoFkdAlBf/lZHNHHV9lChoBmgJaA9DCJOq7Sb4KW9AlIaUUpRoFU2UAmgWR0CUGTMDwH7hdX2UKGgGaAloD0MIkXwlkJKVbECUhpRSlGgVTdoDaBZHQJQc1T2nKnx1fZQoaAZoCWgPQwg9DK1OTtVjQJSGlFKUaBVN6ANoFkdAlCUcfms/6nV9lChoBmgJaA9DCN2YnrDE9nFAlIaUUpRoFU1zAWgWR0CUJY5wOvt/dX2UKGgGaAloD0MIFoVdFL0BZUCUhpRSlGgVTegDaBZHQJQmmC17Y051fZQoaAZoCWgPQwiFB82uewtjQJSGlFKUaBVN6ANoFkdAlCkH/T9bYHV9lChoBmgJaA9DCH0E/vBzPnBAlIaUUpRoFU1FAWgWR0CUKf0Bfa6CdX2UKGgGaAloD0MIY7ml1RD4b0CUhpRSlGgVTdwCaBZHQJQtBbt7a7F1fZQoaAZoCWgPQwiBy2PNyPhjQJSGlFKUaBVN6ANoFkdAlDMsQyylenV9lChoBmgJaA9DCL/09uciVG9AlIaUUpRoFU1XAmgWR0CUOGtA9mpVdX2UKGgGaAloD0MIZryt9FozbkCUhpRSlGgVTZkBaBZHQJQ+SUyHmA91fZQoaAZoCWgPQwhDHOviNkBuQJSGlFKUaBVN7gJoFkdAlEERUedTYXV9lChoBmgJaA9DCFbzHJHvN2ZAlIaUUpRoFU3oA2gWR0CUQ203Ov+wdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42e8ac2cba2c99e8c7a7f68422bbde06893d73106eee7b9f650474318bb77f7b
3
+ size 147298
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc437c47160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc437c471f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc437c47280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc437c47310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc437c473a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc437c47430>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc437c474c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc437c47550>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc437c475e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc437c47670>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc437c47700>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc437c42600>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670419581529332964,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMrYLzs2fe5gzKbNnMExzFavUs5zQK8tQAAgD8AAIA/AM5QvI/efLptGnO6xK9ftq/MyLqSRI45AACAPwAAgD8av2m9i9E1P0Untz06Hla+fOibvFJ/vj0AAAAAAAAAABqWWT1EdbQ/Y/ohP/LCyr1AcCO8IAfZPQAAAAAAAAAA5tA0vY9+LrqTYsg6lyZKNhCgSDvagOm5AACAPwAAgD8NH2I+KkOmP6zLnj41hbm+0QqUPgCQlrsAAAAAAAAAAE3WBb5ygZE+havWPZ8pSr5NqMI8LfYXPQAAAAAAAAAAZkMxvcM5Grqq2246YaviNe1CdDqBIIy5AACAPwAAgD/mska9FLSquhxeCDlDyJq2aT+aOIBVkLUAAIA/AACAP2bwJT0pzFO6RWHqNyKELbJ28aO7mhQHtwAAgD8AAIA/AGYCPVyrfrpr5EQ7C+4rNqmFXLogGGa6AACAPwAAgD9m81g9j25xuqLcKrxmH502pU2MudVnEbYAAIA/AACAP83q9rx7xrW6V3YLOpZSA7a4hlE4a8weuQAAgD8AAIA/5n6xPXtU97hsua27HnVcOPVewzsm00Y4AACAPwAAAACaVhA9KcBEurvogTrLo4c2iPvpuc3cmbkAAIA/AACAP7Nngz0p+F26plVNO+FIYzglw0U7Ttb0uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGM3K9iGTYECUhpRSlIwBbJRN6AOMAXSUR0CSnNrleWv9dX2UKGgGaAloD0MI0LcFS/VAYUCUhpRSlGgVTegDaBZHQJKdK4smOVB1fZQoaAZoCWgPQwj99J81P7pgQJSGlFKUaBVN6ANoFkdAkp7TdtVJc3V9lChoBmgJaA9DCH+FzJXBTWdAlIaUUpRoFU3oA2gWR0CSoNd7v5P/dX2UKGgGaAloD0MIZoLhXEN8YkCUhpRSlGgVTegDaBZHQJKiejvd/KB1fZQoaAZoCWgPQwjvG1975uxgQJSGlFKUaBVN6ANoFkdAkqZehf0Eo3V9lChoBmgJaA9DCA9eu7RhQmNAlIaUUpRoFU3oA2gWR0CSqZEvTPSldX2UKGgGaAloD0MIKPOPvkmkX0CUhpRSlGgVTegDaBZHQJKz+fseGPB1fZQoaAZoCWgPQwiz0w/qIp5aQJSGlFKUaBVN6ANoFkdAktF265Gz8nV9lChoBmgJaA9DCI4Dr5Y7JGVAlIaUUpRoFU3oA2gWR0CS06JKaodddX2UKGgGaAloD0MI3PXSFIHqYECUhpRSlGgVTegDaBZHQJLZqaH9FWp1fZQoaAZoCWgPQwjbTlsjAshjQJSGlFKUaBVN6ANoFkdAkt3MnE2pAHV9lChoBmgJaA9DCE+TGW+rOmBAlIaUUpRoFU3oA2gWR0CS3fIQvpQldX2UKGgGaAloD0MIm8b2WtDkYkCUhpRSlGgVTegDaBZHQJLfs/pt78h1fZQoaAZoCWgPQwjY9KCglGViQJSGlFKUaBVN6ANoFkdAkuAimuTzNHV9lChoBmgJaA9DCL9+iA0Wmm9AlIaUUpRoFU0KA2gWR0CS45vnr6cidX2UKGgGaAloD0MIp8r3jEToXUCUhpRSlGgVTegDaBZHQJLqkgB91EF1fZQoaAZoCWgPQwgxJ2iTQyplQJSGlFKUaBVN6ANoFkdAkuuqb8WKuXV9lChoBmgJaA9DCESF6uZicmVAlIaUUpRoFU3oA2gWR0CS6+uYhMakdX2UKGgGaAloD0MIWipvR7h/Y0CUhpRSlGgVTegDaBZHQJLtXxmTTv11fZQoaAZoCWgPQwhPWyOCcUplQJSGlFKUaBVN6ANoFkdAkvC/wVj7RHV9lChoBmgJaA9DCBaFXRQ95FlAlIaUUpRoFU3oA2gWR0CS9HtxdY4idX2UKGgGaAloD0MIWRe30QCKZECUhpRSlGgVTegDaBZHQJL3eIvalDZ1fZQoaAZoCWgPQwhcVIuIYl9lQJSGlFKUaBVN6ANoFkdAkwD9tl7MPnV9lChoBmgJaA9DCLnDJjLzN2FAlIaUUpRoFU3oA2gWR0CTHjh8IAwPdX2UKGgGaAloD0MIRWYucHkPY0CUhpRSlGgVTegDaBZHQJMgQMtsen11fZQoaAZoCWgPQwgjZvZ5TCdxQJSGlFKUaBVNegJoFkdAkyRkb1h9cHV9lChoBmgJaA9DCARxHk7gn2VAlIaUUpRoFU3oA2gWR0CTJjfVZs9CdX2UKGgGaAloD0MIARO4dTd4cUCUhpRSlGgVTX0DaBZHQJMmgf4h2W91fZQoaAZoCWgPQwi77q1ITOpdQJSGlFKUaBVN6ANoFkdAkynt6kZaV3V9lChoBmgJaA9DCBg+IqZED2VAlIaUUpRoFU3oA2gWR0CTKg5TIeYEdX2UKGgGaAloD0MIHxK+9zflYECUhpRSlGgVTegDaBZHQJMrrYoRZlp1fZQoaAZoCWgPQwhR+GwdHPFhQJSGlFKUaBVN6ANoFkdAky9ghB7eEnV9lChoBmgJaA9DCDYdAdwsHkRAlIaUUpRoFU0CAWgWR0CTM7wt8NQTdX2UKGgGaAloD0MIoFBPH4HwXUCUhpRSlGgVTegDaBZHQJM2fCtRvWJ1fZQoaAZoCWgPQwijOh3Ies9iQJSGlFKUaBVN6ANoFkdAkzet4A0bcXV9lChoBmgJaA9DCBA7U+i8t2FAlIaUUpRoFU3oA2gWR0CTOZvsZ5zHdX2UKGgGaAloD0MIc/c5PtrNZECUhpRSlGgVTegDaBZHQJM9UWSEDhd1fZQoaAZoCWgPQwg4ns+AektdQJSGlFKUaBVN6ANoFkdAk0GAdOqNqHV9lChoBmgJaA9DCPrvwWsXm3FAlIaUUpRoFU1nAmgWR0CTQsWKMvRJdX2UKGgGaAloD0MI6rDCLZ/kY0CUhpRSlGgVTegDaBZHQJNEtGZuyeJ1fZQoaAZoCWgPQwjaBBiWPzNiQJSGlFKUaBVN6ANoFkdAk06jynUDuHV9lChoBmgJaA9DCBBAahPnRHBAlIaUUpRoFU3sAmgWR0CTaiTjebd8dX2UKGgGaAloD0MIvoi2Y2pKZUCUhpRSlGgVTegDaBZHQJNrnlT3qRl1fZQoaAZoCWgPQwhDA7Fs5glhQJSGlFKUaBVN6ANoFkdAk3FnO8kD6nV9lChoBmgJaA9DCGSV0jM9lGFAlIaUUpRoFU3oA2gWR0CTcw6v7m+1dX2UKGgGaAloD0MIILb0aKp1bkCUhpRSlGgVTZwCaBZHQJNzGws5GSZ1fZQoaAZoCWgPQwiZvAFmvvpkQJSGlFKUaBVN6ANoFkdAk3cPHT7VKHV9lChoBmgJaA9DCBvWVBaFFmVAlIaUUpRoFU3oA2gWR0CTd2vmozeodX2UKGgGaAloD0MI1uO+1TrWY0CUhpRSlGgVTegDaBZHQJN9QkiUxEh1fZQoaAZoCWgPQwju6lVkdGBfQJSGlFKUaBVN6ANoFkdAk4II4Ia99XV9lChoBmgJaA9DCERtG0ZBvFtAlIaUUpRoFU3oA2gWR0CThOWE9MbndX2UKGgGaAloD0MI3SIw1jeAZECUhpRSlGgVTegDaBZHQJOIAx1xKg91fZQoaAZoCWgPQwg4o+ar5FRyQJSGlFKUaBVNgwFoFkdAk4kz8DSw4nV9lChoBmgJaA9DCFxy3CmdI2VAlIaUUpRoFU3oA2gWR0CTi4Z/CqIadX2UKGgGaAloD0MI/Yf021d6Y0CUhpRSlGgVTegDaBZHQJOPcn+hoM91fZQoaAZoCWgPQwhSYAFMGRJlQJSGlFKUaBVN6ANoFkdAk5C6uB+WnnV9lChoBmgJaA9DCGfTEcDNOj1AlIaUUpRoFU0GAWgWR0CTkNpZwGW2dX2UKGgGaAloD0MI9WOT/AhNZECUhpRSlGgVTegDaBZHQJOSnIfbKzR1fZQoaAZoCWgPQwgj9DP1OiZiQJSGlFKUaBVN6ANoFkdAk5w8jFAE+3V9lChoBmgJaA9DCFeTp6ymh25AlIaUUpRoFU1KAWgWR0CTuJigTRICdX2UKGgGaAloD0MIBcWPMXeRbECUhpRSlGgVTV8DaBZHQJO43Eit7rt1fZQoaAZoCWgPQwgktOVcCillQJSGlFKUaBVN6ANoFkdAk7nuOCGvfXV9lChoBmgJaA9DCEc82c2MAWNAlIaUUpRoFU3oA2gWR0CTu24Ia99MdX2UKGgGaAloD0MI9fV8zXIyakCUhpRSlGgVTW0DaBZHQJPBKHk92X91fZQoaAZoCWgPQwh5knTN5AllQJSGlFKUaBVN6ANoFkdAk8QlEAo5P3V9lChoBmgJaA9DCI6R7BHqjGFAlIaUUpRoFU3oA2gWR0CTyC20iQkpdX2UKGgGaAloD0MIf9k9eVjuXkCUhpRSlGgVTegDaBZHQJPPAkxASnN1fZQoaAZoCWgPQwhHWipvR3JfQJSGlFKUaBVN6ANoFkdAk9hGLP2PDHV9lChoBmgJaA9DCOOpRxqc9nFAlIaUUpRoFU2zA2gWR0CT2F+HJtBOdX2UKGgGaAloD0MILUFGQIXlb0CUhpRSlGgVTSsDaBZHQJPaHFzdUKl1fZQoaAZoCWgPQwiuY1xxsdpwQJSGlFKUaBVNIQJoFkdAk9xTjaPCEnV9lChoBmgJaA9DCCEiNe3iOWFAlIaUUpRoFU3oA2gWR0CT3O1uBMBZdX2UKGgGaAloD0MIokRLHs9xYkCUhpRSlGgVTegDaBZHQJPfHxSYPXl1fZQoaAZoCWgPQwjsUE1JVv9iQJSGlFKUaBVN6ANoFkdAk+R4bfgrH3V9lChoBmgJaA9DCDzcDg2LO15AlIaUUpRoFU3oA2gWR0CT5k5HmRvFdX2UKGgGaAloD0MI/5JUppgRbECUhpRSlGgVTdgCaBZHQJPnbS1E3Kl1fZQoaAZoCWgPQwgOvFruTLthQJSGlFKUaBVN6ANoFkdAk+9EQXhwVHV9lChoBmgJaA9DCA3gLZCgYmNAlIaUUpRoFU3oA2gWR0CUCXi2lVLjdX2UKGgGaAloD0MIk9+ikyUPY0CUhpRSlGgVTegDaBZHQJQMOVcD8tR1fZQoaAZoCWgPQwibx2EwfyVuQJSGlFKUaBVNNwJoFkdAlAx6KHfuTnV9lChoBmgJaA9DCEzChTwCuGNAlIaUUpRoFU3oA2gWR0CUENODaoMsdX2UKGgGaAloD0MIHEKVmr3QYUCUhpRSlGgVTegDaBZHQJQT/HwPRRd1fZQoaAZoCWgPQwiq9BPOrqNwQJSGlFKUaBVNCAJoFkdAlBaGjTKDCnV9lChoBmgJaA9DCFiMutZebG9AlIaUUpRoFU3TAWgWR0CUFst4RmK7dX2UKGgGaAloD0MIEynN5nEebkCUhpRSlGgVTacCaBZHQJQX2eMAFPl1fZQoaAZoCWgPQwh+xoUDoU9mQJSGlFKUaBVN6ANoFkdAlBf/lZHNHHV9lChoBmgJaA9DCJOq7Sb4KW9AlIaUUpRoFU2UAmgWR0CUGTMDwH7hdX2UKGgGaAloD0MIkXwlkJKVbECUhpRSlGgVTdoDaBZHQJQc1T2nKnx1fZQoaAZoCWgPQwg9DK1OTtVjQJSGlFKUaBVN6ANoFkdAlCUcfms/6nV9lChoBmgJaA9DCN2YnrDE9nFAlIaUUpRoFU1zAWgWR0CUJY5wOvt/dX2UKGgGaAloD0MIFoVdFL0BZUCUhpRSlGgVTegDaBZHQJQmmC17Y051fZQoaAZoCWgPQwiFB82uewtjQJSGlFKUaBVN6ANoFkdAlCkH/T9bYHV9lChoBmgJaA9DCH0E/vBzPnBAlIaUUpRoFU1FAWgWR0CUKf0Bfa6CdX2UKGgGaAloD0MIY7ml1RD4b0CUhpRSlGgVTdwCaBZHQJQtBbt7a7F1fZQoaAZoCWgPQwiBy2PNyPhjQJSGlFKUaBVN6ANoFkdAlDMsQyylenV9lChoBmgJaA9DCL/09uciVG9AlIaUUpRoFU1XAmgWR0CUOGtA9mpVdX2UKGgGaAloD0MIZryt9FozbkCUhpRSlGgVTZkBaBZHQJQ+SUyHmA91fZQoaAZoCWgPQwhDHOviNkBuQJSGlFKUaBVN7gJoFkdAlEERUedTYXV9lChoBmgJaA9DCFbzHJHvN2ZAlIaUUpRoFU3oA2gWR0CUQ203Ov+wdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4c143299116c7f8f98c048afd9919d37e6bf03b7c849b26f6837d595d341dc5
3
+ size 87993
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3edc5d8157027450cbaf15e43c391f2233598357345359ce72333b251b2d0e4
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (220 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.68273019064446, "std_reward": 19.73492873225239, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T14:05:51.108187"}