Upload folder using huggingface_hub
Browse files- added_tokens.json +1 -0
- config.json +28 -0
- eval_results.txt +20 -0
- model_args.json +1 -0
- optimizer.pt +3 -0
- pytorch_model.bin +3 -0
- scheduler.pt +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +1 -0
- test_eval_ar.txt +43 -0
- test_eval_en.txt +43 -0
- test_eval_fr.txt +43 -0
- test_eval_ru.txt +43 -0
- test_eval_zh.txt +43 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<e>": 250002, "</e>": 250003}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.16.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250004
|
28 |
+
}
|
eval_results.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accuracy = 0.8307573415765069
|
2 |
+
cls_report = precision recall f1-score support
|
3 |
+
|
4 |
+
0.0 0.8679 0.7876 0.8258 659
|
5 |
+
1.0 0.7989 0.8756 0.8355 635
|
6 |
+
|
7 |
+
accuracy 0.8308 1294
|
8 |
+
macro avg 0.8334 0.8316 0.8306 1294
|
9 |
+
weighted avg 0.8340 0.8308 0.8305 1294
|
10 |
+
|
11 |
+
eval_loss = 0.3976426025691592
|
12 |
+
fn = 79
|
13 |
+
fp = 140
|
14 |
+
macro_f1 = 0.8306188574635684
|
15 |
+
mcc = 0.6649430724287243
|
16 |
+
tn = 519
|
17 |
+
tp = 556
|
18 |
+
weighted_f1 = 0.8305290299308514
|
19 |
+
weighted_p = 0.8333717756506362
|
20 |
+
weighted_r = 0.8315737277908547
|
model_args.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"adam_epsilon": 1e-08, "begin_tag": "<e>", "best_model_dir": "best_model", "cache_dir": "temp/cache_dir/", "config": {}, "custom_layer_parameters": [], "custom_parameter_groups": [], "dataloader_num_workers": 70, "do_lower_case": false, "dynamic_quantize": false, "early_stopping_consider_epochs": false, "early_stopping_delta": 0, "early_stopping_metric": "eval_loss", "early_stopping_metric_minimize": true, "early_stopping_patience": 10, "encoding": null, "end_tag": "</e>", "eval_batch_size": 8, "evaluate_during_training": true, "evaluate_during_training_silent": false, "evaluate_during_training_steps": 20, "evaluate_during_training_verbose": true, "evaluate_each_epoch": true, "fp16": false, "gradient_accumulation_steps": 1, "learning_rate": 1e-05, "local_rank": -1, "logging_steps": 20, "manual_seed": 777, "max_grad_norm": 1.0, "max_seq_length": 120, "model_name": "xlm-roberta-large", "model_type": "xlmroberta", "multiprocessing_chunksize": 500, "n_gpu": 1, "no_cache": false, "no_save": false, "num_train_epochs": 5, "output_dir": "temp/outputs/", "overwrite_output_dir": true, "process_count": 70, "quantized_model": false, "reprocess_input_data": true, "save_best_model": true, "save_eval_checkpoints": false, "save_model_every_epoch": false, "save_optimizer_and_scheduler": true, "save_steps": 20, "save_recent_only": true, "silent": false, "tensorboard_dir": null, "thread_count": null, "train_batch_size": 8, "train_custom_parameters_only": false, "use_cached_eval_features": false, "use_early_stopping": true, "use_multiprocessing": false, "wandb_kwargs": {"group": "all_xlm-roberta-large_CLS-BT_concat", "job_type": "2"}, "wandb_project": "TransWiC-groups", "warmup_ratio": 0.1, "warmup_steps": 730, "weight_decay": 0, "skip_special_tokens": true, "model_class": "ClassificationModel", "labels_list": [0, 1], "labels_map": {}, "lazy_delimiter": "\t", "lazy_labels_column": 1, "lazy_loading": false, "lazy_loading_start_line": 1, "lazy_text_a_column": null, "lazy_text_b_column": null, "lazy_text_column": 0, "onnx": false, "regression": false, "sliding_window": false, "stride": 0.8, "tie_value": 1, "tagging": true, "strategy": "CLS-BT", "special_tags": ["<s>", "<e>"], "merge_n": 3, "merge_type": "concat"}
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9b96bf3dae48b0f0ca1e954feb4041de73ea98190726045ae4e8b1ad87d50be
|
3 |
+
size 4546546317
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30e849dc2cfd2e5372a9b8247939ec0b8cd5def5bc3bd350162e53b9919b0c59
|
3 |
+
size 2277523261
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26707f9d2ee18f8efcee9786e913e0ba9ed2de668b042ff857e776c37c6a2a48
|
3 |
+
size 627
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
|
test_eval_ar.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.8401 0.7460 0.7903 500
|
5 |
+
T 0.7716 0.8580 0.8125 500
|
6 |
+
|
7 |
+
accuracy 0.8020 1000
|
8 |
+
macro avg 0.8058 0.8020 0.8014 1000
|
9 |
+
weighted avg 0.8058 0.8020 0.8014 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.7653061224489796
|
14 |
+
Weighted Recall = 0.7653061224489796
|
15 |
+
Weighted Precision = 0.7898926812104152
|
16 |
+
Weighted F1 = 0.7637135656016242
|
17 |
+
Macro Recall = 0.7746331236897275
|
18 |
+
Macro Precision = 0.7823275862068966
|
19 |
+
Macro F1 = 0.7646936005846121
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.9
|
22 |
+
Weighted Recall = 0.9
|
23 |
+
Weighted Precision = 0.9111111111111111
|
24 |
+
Weighted F1 = 0.8862745098039216
|
25 |
+
Macro Recall = 0.75
|
26 |
+
Macro Precision = 0.9444444444444444
|
27 |
+
Macro F1 = 0.803921568627451
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.8016194331983806
|
30 |
+
Weighted Recall = 0.8016194331983806
|
31 |
+
Weighted Precision = 0.8058517969978864
|
32 |
+
Weighted F1 = 0.8007367974063984
|
33 |
+
Macro Recall = 0.8008524590163935
|
34 |
+
Macro Precision = 0.8062750333778371
|
35 |
+
Macro F1 = 0.8005602702480019
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.8090452261306532
|
38 |
+
Weighted Recall = 0.8090452261306532
|
39 |
+
Weighted Precision = 0.8102878637128836
|
40 |
+
Weighted F1 = 0.8089294521108764
|
41 |
+
Macro Recall = 0.809328989569917
|
42 |
+
Macro Precision = 0.8100807574491785
|
43 |
+
Macro F1 = 0.808968043450802
|
test_eval_en.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.8941 0.8780 0.8860 500
|
5 |
+
T 0.8802 0.8960 0.8880 500
|
6 |
+
|
7 |
+
accuracy 0.8870 1000
|
8 |
+
macro avg 0.8871 0.8870 0.8870 1000
|
9 |
+
weighted avg 0.8871 0.8870 0.8870 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.875
|
14 |
+
Weighted Recall = 0.875
|
15 |
+
Weighted Precision = 0.87578125
|
16 |
+
Weighted F1 = 0.8747086247086249
|
17 |
+
Macro Recall = 0.8730650154798762
|
18 |
+
Macro Precision = 0.8765625
|
19 |
+
Macro F1 = 0.8741258741258742
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.7333333333333333
|
22 |
+
Weighted Recall = 0.7333333333333333
|
23 |
+
Weighted Precision = 0.7642857142857142
|
24 |
+
Weighted F1 = 0.7357142857142857
|
25 |
+
Macro Recall = 0.75
|
26 |
+
Macro Precision = 0.7410714285714286
|
27 |
+
Macro F1 = 0.7321428571428572
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.8958333333333334
|
30 |
+
Weighted Recall = 0.8958333333333334
|
31 |
+
Weighted Precision = 0.8958405073461891
|
32 |
+
Weighted F1 = 0.8958337069811766
|
33 |
+
Macro Recall = 0.8958390128416673
|
34 |
+
Macro Precision = 0.8958333333333333
|
35 |
+
Macro F1 = 0.8958329596854901
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.8926174496644296
|
38 |
+
Weighted Recall = 0.8926174496644296
|
39 |
+
Weighted Precision = 0.8926174496644296
|
40 |
+
Weighted F1 = 0.8926174496644297
|
41 |
+
Macro Recall = 0.8926174496644296
|
42 |
+
Macro Precision = 0.8926174496644296
|
43 |
+
Macro F1 = 0.8926174496644297
|
test_eval_fr.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.8202 0.7940 0.8069 500
|
5 |
+
T 0.8004 0.8260 0.8130 500
|
6 |
+
|
7 |
+
accuracy 0.8100 1000
|
8 |
+
macro avg 0.8103 0.8100 0.8100 1000
|
9 |
+
weighted avg 0.8103 0.8100 0.8100 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.7989130434782609
|
14 |
+
Weighted Recall = 0.7989130434782609
|
15 |
+
Weighted Precision = 0.7998764470398878
|
16 |
+
Weighted F1 = 0.799182108122294
|
17 |
+
Macro Recall = 0.7985804604556841
|
18 |
+
Macro Precision = 0.7969862363550071
|
19 |
+
Macro F1 = 0.7975677202580953
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.8333333333333334
|
22 |
+
Weighted Recall = 0.8333333333333334
|
23 |
+
Weighted Precision = 0.8653846153846154
|
24 |
+
Weighted F1 = 0.8101472995090016
|
25 |
+
Macro Recall = 0.7222222222222222
|
26 |
+
Macro Precision = 0.9038461538461539
|
27 |
+
Macro F1 = 0.7545008183306054
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.7840466926070039
|
30 |
+
Weighted Recall = 0.7840466926070039
|
31 |
+
Weighted Precision = 0.7850740775183058
|
32 |
+
Weighted F1 = 0.783698474648116
|
33 |
+
Macro Recall = 0.7834794723850196
|
34 |
+
Macro Precision = 0.7853158151444946
|
35 |
+
Macro F1 = 0.7835346073733453
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.8639705882352942
|
38 |
+
Weighted Recall = 0.8639705882352942
|
39 |
+
Weighted Precision = 0.8637219794646706
|
40 |
+
Weighted F1 = 0.8637391785061397
|
41 |
+
Macro Recall = 0.8596912048524952
|
42 |
+
Macro Precision = 0.8621474572507217
|
43 |
+
Macro F1 = 0.8608079886035158
|
test_eval_ru.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.7375 0.7640 0.7505 500
|
5 |
+
T 0.7552 0.7280 0.7413 500
|
6 |
+
|
7 |
+
accuracy 0.7460 1000
|
8 |
+
macro avg 0.7463 0.7460 0.7459 1000
|
9 |
+
weighted avg 0.7463 0.7460 0.7459 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.7333333333333333
|
14 |
+
Weighted Recall = 0.7333333333333333
|
15 |
+
Weighted Precision = 0.7472096530920059
|
16 |
+
Weighted F1 = 0.7370370370370372
|
17 |
+
Macro Recall = 0.7320574162679425
|
18 |
+
Macro Precision = 0.7194570135746606
|
19 |
+
Macro F1 = 0.7222222222222223
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.4375
|
22 |
+
Weighted Recall = 0.4375
|
23 |
+
Weighted Precision = 0.5113636363636364
|
24 |
+
Weighted F1 = 0.42647058823529416
|
25 |
+
Macro Recall = 0.4833333333333333
|
26 |
+
Macro Precision = 0.4818181818181818
|
27 |
+
Macro F1 = 0.43529411764705883
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.7491408934707904
|
30 |
+
Weighted Recall = 0.7491408934707904
|
31 |
+
Weighted Precision = 0.749099279228316
|
32 |
+
Weighted F1 = 0.7491112344331189
|
33 |
+
Macro Recall = 0.7487943262411347
|
34 |
+
Macro Precision = 0.7489120151371806
|
35 |
+
Macro F1 = 0.7488443030940755
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.7553763440860215
|
38 |
+
Weighted Recall = 0.7553763440860215
|
39 |
+
Weighted Precision = 0.7561659946236561
|
40 |
+
Weighted F1 = 0.7553286126409651
|
41 |
+
Macro Recall = 0.7557030098013704
|
42 |
+
Macro Precision = 0.7559027777777778
|
43 |
+
Macro F1 = 0.755360433604336
|
test_eval_zh.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.6026 0.6520 0.6263 500
|
5 |
+
T 0.6209 0.5700 0.5944 500
|
6 |
+
|
7 |
+
accuracy 0.6110 1000
|
8 |
+
macro avg 0.6118 0.6110 0.6103 1000
|
9 |
+
weighted avg 0.6118 0.6110 0.6103 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.5645161290322581
|
14 |
+
Weighted Recall = 0.5645161290322581
|
15 |
+
Weighted Precision = 0.6082607953575695
|
16 |
+
Weighted F1 = 0.5682634478697901
|
17 |
+
Macro Recall = 0.5833333333333333
|
18 |
+
Macro Precision = 0.5804232804232804
|
19 |
+
Macro F1 = 0.5634941329856584
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.45
|
22 |
+
Weighted Recall = 0.45
|
23 |
+
Weighted Precision = 0.7318681318681318
|
24 |
+
Weighted F1 = 0.4879795396419436
|
25 |
+
Macro Recall = 0.5625
|
26 |
+
Macro Precision = 0.5439560439560439
|
27 |
+
Macro F1 = 0.43734015345268534
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.6191335740072202
|
30 |
+
Weighted Recall = 0.6191335740072202
|
31 |
+
Weighted Precision = 0.6197037756321901
|
32 |
+
Weighted F1 = 0.6191745264522859
|
33 |
+
Macro Recall = 0.6193922796035471
|
34 |
+
Macro Precision = 0.6193409200526638
|
35 |
+
Macro F1 = 0.619122405158566
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.6153846153846154
|
38 |
+
Weighted Recall = 0.6153846153846154
|
39 |
+
Weighted Precision = 0.6167832167832168
|
40 |
+
Weighted F1 = 0.611236802413273
|
41 |
+
Macro Recall = 0.6120647969052224
|
42 |
+
Macro Precision = 0.6170454545454546
|
43 |
+
Macro F1 = 0.6096813725490197
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sp_model_kwargs": {}, "do_lower_case": false, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": "/home/hh2/.cache/huggingface/transformers/7766c86e10505ed9b39af34e456480399bf06e35b36b8f2b917460a2dbe94e59.a984cf52fc87644bd4a2165f1e07e0ac880272c1e82d648b4674907056912bd7", "name_or_path": "xlm-roberta-large", "tokenizer_class": "XLMRobertaTokenizer"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a1cb2df9afe0255ecde81e196b3ee018d6143fc8ea2eba57c675857fca7c79f
|
3 |
+
size 2875
|