HHansi commited on
Commit
3cb9af2
1 Parent(s): bfb1359

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<e>": 250002, "</e>": 250003}
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-large",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.16.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250004
28
+ }
eval_results.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accuracy = 0.8307573415765069
2
+ cls_report = precision recall f1-score support
3
+
4
+ 0.0 0.8679 0.7876 0.8258 659
5
+ 1.0 0.7989 0.8756 0.8355 635
6
+
7
+ accuracy 0.8308 1294
8
+ macro avg 0.8334 0.8316 0.8306 1294
9
+ weighted avg 0.8340 0.8308 0.8305 1294
10
+
11
+ eval_loss = 0.3976426025691592
12
+ fn = 79
13
+ fp = 140
14
+ macro_f1 = 0.8306188574635684
15
+ mcc = 0.6649430724287243
16
+ tn = 519
17
+ tp = 556
18
+ weighted_f1 = 0.8305290299308514
19
+ weighted_p = 0.8333717756506362
20
+ weighted_r = 0.8315737277908547
model_args.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"adam_epsilon": 1e-08, "begin_tag": "<e>", "best_model_dir": "best_model", "cache_dir": "temp/cache_dir/", "config": {}, "custom_layer_parameters": [], "custom_parameter_groups": [], "dataloader_num_workers": 70, "do_lower_case": false, "dynamic_quantize": false, "early_stopping_consider_epochs": false, "early_stopping_delta": 0, "early_stopping_metric": "eval_loss", "early_stopping_metric_minimize": true, "early_stopping_patience": 10, "encoding": null, "end_tag": "</e>", "eval_batch_size": 8, "evaluate_during_training": true, "evaluate_during_training_silent": false, "evaluate_during_training_steps": 20, "evaluate_during_training_verbose": true, "evaluate_each_epoch": true, "fp16": false, "gradient_accumulation_steps": 1, "learning_rate": 1e-05, "local_rank": -1, "logging_steps": 20, "manual_seed": 777, "max_grad_norm": 1.0, "max_seq_length": 120, "model_name": "xlm-roberta-large", "model_type": "xlmroberta", "multiprocessing_chunksize": 500, "n_gpu": 1, "no_cache": false, "no_save": false, "num_train_epochs": 5, "output_dir": "temp/outputs/", "overwrite_output_dir": true, "process_count": 70, "quantized_model": false, "reprocess_input_data": true, "save_best_model": true, "save_eval_checkpoints": false, "save_model_every_epoch": false, "save_optimizer_and_scheduler": true, "save_steps": 20, "save_recent_only": true, "silent": false, "tensorboard_dir": null, "thread_count": null, "train_batch_size": 8, "train_custom_parameters_only": false, "use_cached_eval_features": false, "use_early_stopping": true, "use_multiprocessing": false, "wandb_kwargs": {"group": "all_xlm-roberta-large_CLS-BT_concat", "job_type": "2"}, "wandb_project": "TransWiC-groups", "warmup_ratio": 0.1, "warmup_steps": 730, "weight_decay": 0, "skip_special_tokens": true, "model_class": "ClassificationModel", "labels_list": [0, 1], "labels_map": {}, "lazy_delimiter": "\t", "lazy_labels_column": 1, "lazy_loading": false, "lazy_loading_start_line": 1, "lazy_text_a_column": null, "lazy_text_b_column": null, "lazy_text_column": 0, "onnx": false, "regression": false, "sliding_window": false, "stride": 0.8, "tie_value": 1, "tagging": true, "strategy": "CLS-BT", "special_tags": ["<s>", "<e>"], "merge_n": 3, "merge_type": "concat"}
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9b96bf3dae48b0f0ca1e954feb4041de73ea98190726045ae4e8b1ad87d50be
3
+ size 4546546317
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30e849dc2cfd2e5372a9b8247939ec0b8cd5def5bc3bd350162e53b9919b0c59
3
+ size 2277523261
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26707f9d2ee18f8efcee9786e913e0ba9ed2de668b042ff857e776c37c6a2a48
3
+ size 627
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
test_eval_ar.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.8401 0.7460 0.7903 500
5
+ T 0.7716 0.8580 0.8125 500
6
+
7
+ accuracy 0.8020 1000
8
+ macro avg 0.8058 0.8020 0.8014 1000
9
+ weighted avg 0.8058 0.8020 0.8014 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7653061224489796
14
+ Weighted Recall = 0.7653061224489796
15
+ Weighted Precision = 0.7898926812104152
16
+ Weighted F1 = 0.7637135656016242
17
+ Macro Recall = 0.7746331236897275
18
+ Macro Precision = 0.7823275862068966
19
+ Macro F1 = 0.7646936005846121
20
+ ADV
21
+ Accuracy = 0.9
22
+ Weighted Recall = 0.9
23
+ Weighted Precision = 0.9111111111111111
24
+ Weighted F1 = 0.8862745098039216
25
+ Macro Recall = 0.75
26
+ Macro Precision = 0.9444444444444444
27
+ Macro F1 = 0.803921568627451
28
+ NOUN
29
+ Accuracy = 0.8016194331983806
30
+ Weighted Recall = 0.8016194331983806
31
+ Weighted Precision = 0.8058517969978864
32
+ Weighted F1 = 0.8007367974063984
33
+ Macro Recall = 0.8008524590163935
34
+ Macro Precision = 0.8062750333778371
35
+ Macro F1 = 0.8005602702480019
36
+ VERB
37
+ Accuracy = 0.8090452261306532
38
+ Weighted Recall = 0.8090452261306532
39
+ Weighted Precision = 0.8102878637128836
40
+ Weighted F1 = 0.8089294521108764
41
+ Macro Recall = 0.809328989569917
42
+ Macro Precision = 0.8100807574491785
43
+ Macro F1 = 0.808968043450802
test_eval_en.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.8941 0.8780 0.8860 500
5
+ T 0.8802 0.8960 0.8880 500
6
+
7
+ accuracy 0.8870 1000
8
+ macro avg 0.8871 0.8870 0.8870 1000
9
+ weighted avg 0.8871 0.8870 0.8870 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.875
14
+ Weighted Recall = 0.875
15
+ Weighted Precision = 0.87578125
16
+ Weighted F1 = 0.8747086247086249
17
+ Macro Recall = 0.8730650154798762
18
+ Macro Precision = 0.8765625
19
+ Macro F1 = 0.8741258741258742
20
+ ADV
21
+ Accuracy = 0.7333333333333333
22
+ Weighted Recall = 0.7333333333333333
23
+ Weighted Precision = 0.7642857142857142
24
+ Weighted F1 = 0.7357142857142857
25
+ Macro Recall = 0.75
26
+ Macro Precision = 0.7410714285714286
27
+ Macro F1 = 0.7321428571428572
28
+ NOUN
29
+ Accuracy = 0.8958333333333334
30
+ Weighted Recall = 0.8958333333333334
31
+ Weighted Precision = 0.8958405073461891
32
+ Weighted F1 = 0.8958337069811766
33
+ Macro Recall = 0.8958390128416673
34
+ Macro Precision = 0.8958333333333333
35
+ Macro F1 = 0.8958329596854901
36
+ VERB
37
+ Accuracy = 0.8926174496644296
38
+ Weighted Recall = 0.8926174496644296
39
+ Weighted Precision = 0.8926174496644296
40
+ Weighted F1 = 0.8926174496644297
41
+ Macro Recall = 0.8926174496644296
42
+ Macro Precision = 0.8926174496644296
43
+ Macro F1 = 0.8926174496644297
test_eval_fr.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.8202 0.7940 0.8069 500
5
+ T 0.8004 0.8260 0.8130 500
6
+
7
+ accuracy 0.8100 1000
8
+ macro avg 0.8103 0.8100 0.8100 1000
9
+ weighted avg 0.8103 0.8100 0.8100 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7989130434782609
14
+ Weighted Recall = 0.7989130434782609
15
+ Weighted Precision = 0.7998764470398878
16
+ Weighted F1 = 0.799182108122294
17
+ Macro Recall = 0.7985804604556841
18
+ Macro Precision = 0.7969862363550071
19
+ Macro F1 = 0.7975677202580953
20
+ ADV
21
+ Accuracy = 0.8333333333333334
22
+ Weighted Recall = 0.8333333333333334
23
+ Weighted Precision = 0.8653846153846154
24
+ Weighted F1 = 0.8101472995090016
25
+ Macro Recall = 0.7222222222222222
26
+ Macro Precision = 0.9038461538461539
27
+ Macro F1 = 0.7545008183306054
28
+ NOUN
29
+ Accuracy = 0.7840466926070039
30
+ Weighted Recall = 0.7840466926070039
31
+ Weighted Precision = 0.7850740775183058
32
+ Weighted F1 = 0.783698474648116
33
+ Macro Recall = 0.7834794723850196
34
+ Macro Precision = 0.7853158151444946
35
+ Macro F1 = 0.7835346073733453
36
+ VERB
37
+ Accuracy = 0.8639705882352942
38
+ Weighted Recall = 0.8639705882352942
39
+ Weighted Precision = 0.8637219794646706
40
+ Weighted F1 = 0.8637391785061397
41
+ Macro Recall = 0.8596912048524952
42
+ Macro Precision = 0.8621474572507217
43
+ Macro F1 = 0.8608079886035158
test_eval_ru.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.7375 0.7640 0.7505 500
5
+ T 0.7552 0.7280 0.7413 500
6
+
7
+ accuracy 0.7460 1000
8
+ macro avg 0.7463 0.7460 0.7459 1000
9
+ weighted avg 0.7463 0.7460 0.7459 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7333333333333333
14
+ Weighted Recall = 0.7333333333333333
15
+ Weighted Precision = 0.7472096530920059
16
+ Weighted F1 = 0.7370370370370372
17
+ Macro Recall = 0.7320574162679425
18
+ Macro Precision = 0.7194570135746606
19
+ Macro F1 = 0.7222222222222223
20
+ ADV
21
+ Accuracy = 0.4375
22
+ Weighted Recall = 0.4375
23
+ Weighted Precision = 0.5113636363636364
24
+ Weighted F1 = 0.42647058823529416
25
+ Macro Recall = 0.4833333333333333
26
+ Macro Precision = 0.4818181818181818
27
+ Macro F1 = 0.43529411764705883
28
+ NOUN
29
+ Accuracy = 0.7491408934707904
30
+ Weighted Recall = 0.7491408934707904
31
+ Weighted Precision = 0.749099279228316
32
+ Weighted F1 = 0.7491112344331189
33
+ Macro Recall = 0.7487943262411347
34
+ Macro Precision = 0.7489120151371806
35
+ Macro F1 = 0.7488443030940755
36
+ VERB
37
+ Accuracy = 0.7553763440860215
38
+ Weighted Recall = 0.7553763440860215
39
+ Weighted Precision = 0.7561659946236561
40
+ Weighted F1 = 0.7553286126409651
41
+ Macro Recall = 0.7557030098013704
42
+ Macro Precision = 0.7559027777777778
43
+ Macro F1 = 0.755360433604336
test_eval_zh.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.6026 0.6520 0.6263 500
5
+ T 0.6209 0.5700 0.5944 500
6
+
7
+ accuracy 0.6110 1000
8
+ macro avg 0.6118 0.6110 0.6103 1000
9
+ weighted avg 0.6118 0.6110 0.6103 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.5645161290322581
14
+ Weighted Recall = 0.5645161290322581
15
+ Weighted Precision = 0.6082607953575695
16
+ Weighted F1 = 0.5682634478697901
17
+ Macro Recall = 0.5833333333333333
18
+ Macro Precision = 0.5804232804232804
19
+ Macro F1 = 0.5634941329856584
20
+ ADV
21
+ Accuracy = 0.45
22
+ Weighted Recall = 0.45
23
+ Weighted Precision = 0.7318681318681318
24
+ Weighted F1 = 0.4879795396419436
25
+ Macro Recall = 0.5625
26
+ Macro Precision = 0.5439560439560439
27
+ Macro F1 = 0.43734015345268534
28
+ NOUN
29
+ Accuracy = 0.6191335740072202
30
+ Weighted Recall = 0.6191335740072202
31
+ Weighted Precision = 0.6197037756321901
32
+ Weighted F1 = 0.6191745264522859
33
+ Macro Recall = 0.6193922796035471
34
+ Macro Precision = 0.6193409200526638
35
+ Macro F1 = 0.619122405158566
36
+ VERB
37
+ Accuracy = 0.6153846153846154
38
+ Weighted Recall = 0.6153846153846154
39
+ Weighted Precision = 0.6167832167832168
40
+ Weighted F1 = 0.611236802413273
41
+ Macro Recall = 0.6120647969052224
42
+ Macro Precision = 0.6170454545454546
43
+ Macro F1 = 0.6096813725490197
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sp_model_kwargs": {}, "do_lower_case": false, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": "/home/hh2/.cache/huggingface/transformers/7766c86e10505ed9b39af34e456480399bf06e35b36b8f2b917460a2dbe94e59.a984cf52fc87644bd4a2165f1e07e0ac880272c1e82d648b4674907056912bd7", "name_or_path": "xlm-roberta-large", "tokenizer_class": "XLMRobertaTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a1cb2df9afe0255ecde81e196b3ee018d6143fc8ea2eba57c675857fca7c79f
3
+ size 2875