Upload folder using huggingface_hub
Browse files- added_tokens.json +1 -0
- config.json +28 -0
- eval_results.txt +20 -0
- model_args.json +1 -0
- optimizer.pt +3 -0
- pytorch_model.bin +3 -0
- scheduler.pt +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +1 -0
- test_eval_ar.txt +43 -0
- test_eval_en.txt +43 -0
- test_eval_fr.txt +43 -0
- test_eval_ru.txt +43 -0
- test_eval_zh.txt +43 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<e>": 250002, "</e>": 250003}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.16.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250004
|
28 |
+
}
|
eval_results.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accuracy = 0.8321732405259087
|
2 |
+
cls_report = precision recall f1-score support
|
3 |
+
|
4 |
+
0.0 0.8973 0.7568 0.8211 658
|
5 |
+
1.0 0.7832 0.9102 0.8420 635
|
6 |
+
|
7 |
+
accuracy 0.8322 1293
|
8 |
+
macro avg 0.8402 0.8335 0.8315 1293
|
9 |
+
weighted avg 0.8413 0.8322 0.8313 1293
|
10 |
+
|
11 |
+
eval_loss = 0.40320912780769075
|
12 |
+
fn = 57
|
13 |
+
fp = 160
|
14 |
+
macro_f1 = 0.8315283145866369
|
15 |
+
mcc = 0.6737517155988195
|
16 |
+
tn = 498
|
17 |
+
tp = 578
|
18 |
+
weighted_f1 = 0.8313428983790963
|
19 |
+
weighted_p = 0.8402475646378086
|
20 |
+
weighted_r = 0.8335375631237585
|
model_args.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"adam_epsilon": 1e-08, "begin_tag": "<e>", "best_model_dir": "best_model", "cache_dir": "temp/cache_dir/", "config": {}, "custom_layer_parameters": [], "custom_parameter_groups": [], "dataloader_num_workers": 70, "do_lower_case": false, "dynamic_quantize": false, "early_stopping_consider_epochs": false, "early_stopping_delta": 0, "early_stopping_metric": "eval_loss", "early_stopping_metric_minimize": true, "early_stopping_patience": 10, "encoding": null, "end_tag": "</e>", "eval_batch_size": 8, "evaluate_during_training": true, "evaluate_during_training_silent": false, "evaluate_during_training_steps": 20, "evaluate_during_training_verbose": true, "evaluate_each_epoch": true, "fp16": false, "gradient_accumulation_steps": 1, "learning_rate": 1e-05, "local_rank": -1, "logging_steps": 20, "manual_seed": 777, "max_grad_norm": 1.0, "max_seq_length": 120, "model_name": "xlm-roberta-large", "model_type": "xlmroberta", "multiprocessing_chunksize": 500, "n_gpu": 1, "no_cache": false, "no_save": false, "num_train_epochs": 5, "output_dir": "temp/outputs/", "overwrite_output_dir": true, "process_count": 70, "quantized_model": false, "reprocess_input_data": true, "save_best_model": true, "save_eval_checkpoints": false, "save_model_every_epoch": false, "save_optimizer_and_scheduler": true, "save_steps": 20, "save_recent_only": true, "silent": false, "tensorboard_dir": null, "thread_count": null, "train_batch_size": 8, "train_custom_parameters_only": false, "use_cached_eval_features": false, "use_early_stopping": true, "use_multiprocessing": false, "wandb_kwargs": {"group": "all_xlm-roberta-large_CLS-ET_concat", "job_type": "2"}, "wandb_project": "TransWiC-groups", "warmup_ratio": 0.1, "warmup_steps": 729, "weight_decay": 0, "skip_special_tokens": true, "model_class": "ClassificationModel", "labels_list": [0, 1], "labels_map": {}, "lazy_delimiter": "\t", "lazy_labels_column": 1, "lazy_loading": false, "lazy_loading_start_line": 1, "lazy_text_a_column": null, "lazy_text_b_column": null, "lazy_text_column": 0, "onnx": false, "regression": false, "sliding_window": false, "stride": 0.8, "tie_value": 1, "tagging": true, "strategy": "CLS-ET", "special_tags": ["<s>", "</e>"], "merge_n": 3, "merge_type": "concat"}
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dc642b936050dd6ee691ea4610ceee7db8aa8b6b8fe751be82709128e767fb4
|
3 |
+
size 4546546317
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05e67e7cafb5e6d9bffcbeb5bdf1048d27ebbc904922a850f80953068918244d
|
3 |
+
size 2277523261
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b15b54c7e9ec18a99b445915e63b86e5862929c5dcfafe22338672a963e77821
|
3 |
+
size 627
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
|
test_eval_ar.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.8511 0.7200 0.7801 500
|
5 |
+
T 0.7574 0.8740 0.8115 500
|
6 |
+
|
7 |
+
accuracy 0.7970 1000
|
8 |
+
macro avg 0.8042 0.7970 0.7958 1000
|
9 |
+
weighted avg 0.8042 0.7970 0.7958 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.7346938775510204
|
14 |
+
Weighted Recall = 0.7346938775510204
|
15 |
+
Weighted Precision = 0.7688370873382583
|
16 |
+
Weighted F1 = 0.7311342146921662
|
17 |
+
Macro Recall = 0.7463312368972745
|
18 |
+
Macro Precision = 0.7603012848914488
|
19 |
+
Macro F1 = 0.7329140461215934
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.8
|
22 |
+
Weighted Recall = 0.8
|
23 |
+
Weighted Precision = 0.64
|
24 |
+
Weighted F1 = 0.7111111111111111
|
25 |
+
Macro Recall = 0.5
|
26 |
+
Macro Precision = 0.4
|
27 |
+
Macro F1 = 0.4444444444444445
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.8076923076923077
|
30 |
+
Weighted Recall = 0.8076923076923077
|
31 |
+
Weighted Precision = 0.8111648454026467
|
32 |
+
Weighted F1 = 0.8069870256602342
|
33 |
+
Macro Recall = 0.8069999999999999
|
34 |
+
Macro Precision = 0.8115506829260177
|
35 |
+
Macro F1 = 0.8068302963197735
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.7989949748743719
|
38 |
+
Weighted Recall = 0.7989949748743719
|
39 |
+
Weighted Precision = 0.8072385648560104
|
40 |
+
Weighted F1 = 0.7978523501915108
|
41 |
+
Macro Recall = 0.799782811829179
|
42 |
+
Macro Precision = 0.8067233404821581
|
43 |
+
Macro F1 = 0.7979951782768684
|
test_eval_en.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.9156 0.8680 0.8912 500
|
5 |
+
T 0.8745 0.9200 0.8967 500
|
6 |
+
|
7 |
+
accuracy 0.8940 1000
|
8 |
+
macro avg 0.8951 0.8940 0.8939 1000
|
9 |
+
weighted avg 0.8951 0.8940 0.8939 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.875
|
14 |
+
Weighted Recall = 0.875
|
15 |
+
Weighted Precision = 0.8815156375300722
|
16 |
+
Weighted F1 = 0.8738977072310407
|
17 |
+
Macro Recall = 0.8707430340557275
|
18 |
+
Macro Precision = 0.884121892542101
|
19 |
+
Macro F1 = 0.873015873015873
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.7333333333333333
|
22 |
+
Weighted Recall = 0.7333333333333333
|
23 |
+
Weighted Precision = 0.7642857142857142
|
24 |
+
Weighted F1 = 0.7357142857142857
|
25 |
+
Macro Recall = 0.75
|
26 |
+
Macro Precision = 0.7410714285714286
|
27 |
+
Macro F1 = 0.7321428571428572
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.9071969696969697
|
30 |
+
Weighted Recall = 0.9071969696969697
|
31 |
+
Weighted Precision = 0.9079195926446487
|
32 |
+
Weighted F1 = 0.9071640044974563
|
33 |
+
Macro Recall = 0.907274553411292
|
34 |
+
Macro Precision = 0.9078538996494052
|
35 |
+
Macro F1 = 0.9071699981700951
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.8959731543624161
|
38 |
+
Weighted Recall = 0.8959731543624161
|
39 |
+
Weighted Precision = 0.895990990990991
|
40 |
+
Weighted F1 = 0.8959719829285047
|
41 |
+
Macro Recall = 0.8959731543624161
|
42 |
+
Macro Precision = 0.895990990990991
|
43 |
+
Macro F1 = 0.8959719829285047
|
test_eval_fr.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.8533 0.7560 0.8017 500
|
5 |
+
T 0.7810 0.8700 0.8231 500
|
6 |
+
|
7 |
+
accuracy 0.8130 1000
|
8 |
+
macro avg 0.8171 0.8130 0.8124 1000
|
9 |
+
weighted avg 0.8171 0.8130 0.8124 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.7554347826086957
|
14 |
+
Weighted Recall = 0.7554347826086957
|
15 |
+
Weighted Precision = 0.7572586357197342
|
16 |
+
Weighted F1 = 0.7524385891869387
|
17 |
+
Macro Recall = 0.7460932840271979
|
18 |
+
Macro Precision = 0.7585213032581454
|
19 |
+
Macro F1 = 0.7482900136798907
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.8333333333333334
|
22 |
+
Weighted Recall = 0.8333333333333334
|
23 |
+
Weighted Precision = 0.8653846153846154
|
24 |
+
Weighted F1 = 0.8101472995090016
|
25 |
+
Macro Recall = 0.7222222222222222
|
26 |
+
Macro Precision = 0.9038461538461539
|
27 |
+
Macro F1 = 0.7545008183306054
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.7937743190661478
|
30 |
+
Weighted Recall = 0.7937743190661478
|
31 |
+
Weighted Precision = 0.7998856018417498
|
32 |
+
Weighted F1 = 0.7923988516887349
|
33 |
+
Macro Recall = 0.7925734102645647
|
34 |
+
Macro Precision = 0.8005288947654974
|
35 |
+
Macro F1 = 0.7921092796092797
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.8860294117647058
|
38 |
+
Weighted Recall = 0.8860294117647058
|
39 |
+
Weighted Precision = 0.8861698184666779
|
40 |
+
Weighted F1 = 0.8860874839504073
|
41 |
+
Macro Recall = 0.8842845326716294
|
42 |
+
Macro Precision = 0.8835020911292097
|
43 |
+
Macro F1 = 0.8838807408937548
|
test_eval_ru.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.7675 0.6800 0.7211 500
|
5 |
+
T 0.7127 0.7940 0.7512 500
|
6 |
+
|
7 |
+
accuracy 0.7370 1000
|
8 |
+
macro avg 0.7401 0.7370 0.7361 1000
|
9 |
+
weighted avg 0.7401 0.7370 0.7361 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.8
|
14 |
+
Weighted Recall = 0.8
|
15 |
+
Weighted Precision = 0.8
|
16 |
+
Weighted F1 = 0.8
|
17 |
+
Macro Recall = 0.784688995215311
|
18 |
+
Macro Precision = 0.784688995215311
|
19 |
+
Macro F1 = 0.784688995215311
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.4375
|
22 |
+
Weighted Recall = 0.4375
|
23 |
+
Weighted Precision = 0.45436507936507936
|
24 |
+
Weighted F1 = 0.44433198380566796
|
25 |
+
Macro Recall = 0.41666666666666663
|
26 |
+
Macro Precision = 0.42063492063492064
|
27 |
+
Macro F1 = 0.4170040485829959
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.7371134020618557
|
30 |
+
Weighted Recall = 0.7371134020618557
|
31 |
+
Weighted Precision = 0.7430375062432769
|
32 |
+
Weighted F1 = 0.7363803869023894
|
33 |
+
Macro Recall = 0.7390425531914894
|
34 |
+
Macro Precision = 0.741737093130282
|
35 |
+
Macro F1 = 0.7367021984358136
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.7446236559139785
|
38 |
+
Weighted Recall = 0.7446236559139785
|
39 |
+
Weighted Precision = 0.746310170214211
|
40 |
+
Weighted F1 = 0.7438993285371143
|
41 |
+
Macro Recall = 0.7438199323445225
|
42 |
+
Macro Precision = 0.7466077903848403
|
43 |
+
Macro F1 = 0.7436436835805738
|
test_eval_zh.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.6613 0.5780 0.6169 500
|
5 |
+
T 0.6252 0.7040 0.6623 500
|
6 |
+
|
7 |
+
accuracy 0.6410 1000
|
8 |
+
macro avg 0.6433 0.6410 0.6396 1000
|
9 |
+
weighted avg 0.6433 0.6410 0.6396 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.6612903225806451
|
14 |
+
Weighted Recall = 0.6612903225806451
|
15 |
+
Weighted Precision = 0.677891259648768
|
16 |
+
Weighted F1 = 0.6653407970647991
|
17 |
+
Macro Recall = 0.6622807017543859
|
18 |
+
Macro Precision = 0.654649947753396
|
19 |
+
Macro F1 = 0.6539994685091681
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.55
|
22 |
+
Weighted Recall = 0.55
|
23 |
+
Weighted Precision = 0.7656565656565656
|
24 |
+
Weighted F1 = 0.592
|
25 |
+
Macro Recall = 0.625
|
26 |
+
Macro Precision = 0.5808080808080808
|
27 |
+
Macro F1 = 0.52
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.6389891696750902
|
30 |
+
Weighted Recall = 0.6389891696750902
|
31 |
+
Weighted Precision = 0.6472738929092112
|
32 |
+
Weighted F1 = 0.6359683170323295
|
33 |
+
Macro Recall = 0.6414058424621805
|
34 |
+
Macro Precision = 0.6462740125188862
|
35 |
+
Macro F1 = 0.6366974883598924
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.6456043956043956
|
38 |
+
Weighted Recall = 0.6456043956043956
|
39 |
+
Weighted Precision = 0.6479747262403385
|
40 |
+
Weighted F1 = 0.645376997710716
|
41 |
+
Macro Recall = 0.6467601547388782
|
42 |
+
Macro Precision = 0.6471381389570645
|
43 |
+
Macro F1 = 0.6455375138709605
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sp_model_kwargs": {}, "do_lower_case": false, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": "/home/hh2/.cache/huggingface/transformers/7766c86e10505ed9b39af34e456480399bf06e35b36b8f2b917460a2dbe94e59.a984cf52fc87644bd4a2165f1e07e0ac880272c1e82d648b4674907056912bd7", "name_or_path": "xlm-roberta-large", "tokenizer_class": "XLMRobertaTokenizer"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9976bf62de2055a8257dfd1fdd8cb6c4658ac9321405ddfc1dd8950c9e143bf
|
3 |
+
size 2875
|