HHansi commited on
Commit
bb7eab8
·
verified ·
1 Parent(s): aea3aa5

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-large",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.16.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
eval_results.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accuracy = 0.51
2
+ cls_report = precision recall f1-score support
3
+
4
+ 0.0 0.5100 1.0000 0.6755 663
5
+ 1.0 0.0000 0.0000 0.0000 637
6
+
7
+ accuracy 0.5100 1300
8
+ macro avg 0.2550 0.5000 0.3377 1300
9
+ weighted avg 0.2601 0.5100 0.3445 1300
10
+
11
+ eval_loss = 0.6929809696103898
12
+ fn = 637
13
+ fp = 0
14
+ macro_f1 = 0.33774834437086093
15
+ mcc = 0.0
16
+ tn = 663
17
+ tp = 0
18
+ weighted_f1 = 0.34450331125827816
19
+ weighted_p = 0.255
20
+ weighted_r = 0.5
model_args.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"adam_epsilon": 1e-08, "begin_tag": "<e>", "best_model_dir": "best_model", "cache_dir": "temp/cache_dir/", "config": {}, "custom_layer_parameters": [], "custom_parameter_groups": [], "dataloader_num_workers": 70, "do_lower_case": false, "dynamic_quantize": false, "early_stopping_consider_epochs": false, "early_stopping_delta": 0, "early_stopping_metric": "eval_loss", "early_stopping_metric_minimize": true, "early_stopping_patience": 10, "encoding": null, "end_tag": "</e>", "eval_batch_size": 8, "evaluate_during_training": true, "evaluate_during_training_silent": false, "evaluate_during_training_steps": 20, "evaluate_during_training_verbose": true, "evaluate_each_epoch": true, "fp16": false, "gradient_accumulation_steps": 1, "learning_rate": 1e-05, "local_rank": -1, "logging_steps": 20, "manual_seed": 777, "max_grad_norm": 1.0, "max_seq_length": 120, "model_name": "xlm-roberta-large", "model_type": "xlmroberta", "multiprocessing_chunksize": 500, "n_gpu": 1, "no_cache": false, "no_save": false, "num_train_epochs": 5, "output_dir": "temp/outputs/", "overwrite_output_dir": true, "process_count": 70, "quantized_model": false, "reprocess_input_data": true, "save_best_model": true, "save_eval_checkpoints": false, "save_model_every_epoch": false, "save_optimizer_and_scheduler": true, "save_steps": 20, "save_recent_only": true, "silent": false, "tensorboard_dir": null, "thread_count": null, "train_batch_size": 8, "train_custom_parameters_only": false, "use_cached_eval_features": false, "use_early_stopping": true, "use_multiprocessing": false, "wandb_kwargs": {"group": "all_xlm-roberta-large_CLS_concat", "job_type": "2"}, "wandb_project": "TransWiC-groups", "warmup_ratio": 0.1, "warmup_steps": 732, "weight_decay": 0, "skip_special_tokens": true, "model_class": "ClassificationModel", "labels_list": [0, 1], "labels_map": {}, "lazy_delimiter": "\t", "lazy_labels_column": 1, "lazy_loading": false, "lazy_loading_start_line": 1, "lazy_text_a_column": null, "lazy_text_b_column": null, "lazy_text_column": 0, "onnx": false, "regression": false, "sliding_window": false, "stride": 0.8, "tie_value": 1, "tagging": false, "strategy": "CLS", "special_tags": null, "merge_n": 1, "merge_type": "concat"}
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2c3ff93e27ea90e591fbb3fb90745a495471439512e1bd02baee2b93bf55c14
3
+ size 4487769257
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22f6d3370258cbe76447de98eef6ae63621a0562f024020a7314f718a7d4744f
3
+ size 2243936061
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ac3e8d1a6fb082fe423b8f8d3d299d13165c7e6d19f32c4159fa8ae24ec76d9
3
+ size 627
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
test_eval_ar.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.6442 0.8620 0.7374 500
5
+ T 0.7915 0.5240 0.6306 500
6
+
7
+ accuracy 0.6930 1000
8
+ macro avg 0.7179 0.6930 0.6840 1000
9
+ weighted avg 0.7179 0.6930 0.6840 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7346938775510204
14
+ Weighted Recall = 0.7346938775510204
15
+ Weighted Precision = 0.7341933813694611
16
+ Weighted F1 = 0.7341355734212877
17
+ Macro Recall = 0.7312368972746331
18
+ Macro Precision = 0.7331923890063425
19
+ Macro F1 = 0.7319023569023568
20
+ ADV
21
+ Accuracy = 0.4
22
+ Weighted Recall = 0.4
23
+ Weighted Precision = 0.85
24
+ Weighted F1 = 0.4
25
+ Macro Recall = 0.625
26
+ Macro Precision = 0.625
27
+ Macro F1 = 0.4
28
+ NOUN
29
+ Accuracy = 0.6821862348178138
30
+ Weighted Recall = 0.6821862348178138
31
+ Weighted Precision = 0.7066184089867289
32
+ Weighted F1 = 0.6736558355717631
33
+ Macro Recall = 0.6841803278688525
34
+ Macro Precision = 0.7057353183541175
35
+ Macro F1 = 0.6742724909389476
36
+ VERB
37
+ Accuracy = 0.7035175879396985
38
+ Weighted Recall = 0.7035175879396985
39
+ Weighted Precision = 0.7394186074494639
40
+ Weighted F1 = 0.691015600152662
41
+ Macro Recall = 0.7015177917519004
42
+ Macro Precision = 0.7403391464112528
43
+ Macro F1 = 0.6903744725738397
test_eval_en.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.6504 0.9080 0.7579 500
5
+ T 0.8477 0.5120 0.6384 500
6
+
7
+ accuracy 0.7100 1000
8
+ macro avg 0.7491 0.7100 0.6982 1000
9
+ weighted avg 0.7491 0.7100 0.6982 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7361111111111112
14
+ Weighted Recall = 0.7361111111111112
15
+ Weighted Precision = 0.76440329218107
16
+ Weighted F1 = 0.7321540625338093
17
+ Macro Recall = 0.7438080495356036
18
+ Macro Precision = 0.7592592592592593
19
+ Macro F1 = 0.7335929892891917
20
+ ADV
21
+ Accuracy = 0.6
22
+ Weighted Recall = 0.6
23
+ Weighted Precision = 0.575
24
+ Weighted F1 = 0.5619047619047619
25
+ Macro Recall = 0.5416666666666667
26
+ Macro Precision = 0.5625
27
+ Macro F1 = 0.5238095238095238
28
+ NOUN
29
+ Accuracy = 0.7291666666666666
30
+ Weighted Recall = 0.7291666666666666
31
+ Weighted Precision = 0.764611623288735
32
+ Weighted F1 = 0.7194976076555023
33
+ Macro Recall = 0.728466891455628
34
+ Macro Precision = 0.7649770352126739
35
+ Macro F1 = 0.7192982456140351
36
+ VERB
37
+ Accuracy = 0.674496644295302
38
+ Weighted Recall = 0.674496644295302
39
+ Weighted Precision = 0.729611190137506
40
+ Weighted F1 = 0.65371668164121
41
+ Macro Recall = 0.674496644295302
42
+ Macro Precision = 0.729611190137506
43
+ Macro F1 = 0.6537166816412099
test_eval_fr.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.6399 0.8460 0.7287 500
5
+ T 0.7729 0.5240 0.6246 500
6
+
7
+ accuracy 0.6850 1000
8
+ macro avg 0.7064 0.6850 0.6766 1000
9
+ weighted avg 0.7064 0.6850 0.6766 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.6630434782608695
14
+ Weighted Recall = 0.6630434782608695
15
+ Weighted Precision = 0.6861707219784603
16
+ Weighted F1 = 0.6609694087615283
17
+ Macro Recall = 0.6737444828820232
18
+ Macro Precision = 0.6781651376146789
19
+ Macro F1 = 0.662405303030303
20
+ ADV
21
+ Accuracy = 0.6333333333333333
22
+ Weighted Recall = 0.6333333333333333
23
+ Weighted Precision = 0.775
24
+ Weighted F1 = 0.6444444444444445
25
+ Macro Recall = 0.7063492063492063
26
+ Macro Precision = 0.6805555555555556
27
+ Macro F1 = 0.6296296296296297
28
+ NOUN
29
+ Accuracy = 0.708171206225681
30
+ Weighted Recall = 0.708171206225681
31
+ Weighted Precision = 0.7249897798136293
32
+ Weighted F1 = 0.7036022125396718
33
+ Macro Recall = 0.7101600714794118
34
+ Macro Precision = 0.7240004519555147
35
+ Macro F1 = 0.7041397412086141
36
+ VERB
37
+ Accuracy = 0.6617647058823529
38
+ Weighted Recall = 0.6617647058823529
39
+ Weighted Precision = 0.6754068779576763
40
+ Weighted F1 = 0.6326871657754011
41
+ Macro Recall = 0.6246484698097602
42
+ Macro Precision = 0.6798758653616614
43
+ Macro F1 = 0.6136363636363636
test_eval_ru.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.5778 0.9060 0.7056 500
5
+ T 0.7824 0.3380 0.4721 500
6
+
7
+ accuracy 0.6220 1000
8
+ macro avg 0.6801 0.6220 0.5888 1000
9
+ weighted avg 0.6801 0.6220 0.5888 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.5333333333333333
14
+ Weighted Recall = 0.5333333333333333
15
+ Weighted Precision = 0.7946666666666666
16
+ Weighted F1 = 0.487962962962963
17
+ Macro Recall = 0.631578947368421
18
+ Macro Precision = 0.72
19
+ Macro F1 = 0.513888888888889
20
+ ADV
21
+ Accuracy = 0.4375
22
+ Weighted Recall = 0.4375
23
+ Weighted Precision = 0.775
24
+ Weighted F1 = 0.32792207792207795
25
+ Macro Recall = 0.55
26
+ Macro Precision = 0.7
27
+ Macro F1 = 0.37662337662337664
28
+ NOUN
29
+ Accuracy = 0.6323024054982818
30
+ Weighted Recall = 0.6323024054982818
31
+ Weighted Precision = 0.66929951017804
32
+ Weighted F1 = 0.6048521703327158
33
+ Macro Recall = 0.624290780141844
34
+ Macro Precision = 0.6716118292205249
35
+ Macro F1 = 0.60142089093702
36
+ VERB
37
+ Accuracy = 0.6209677419354839
38
+ Weighted Recall = 0.6209677419354839
39
+ Weighted Precision = 0.7037903225806452
40
+ Weighted F1 = 0.5819198695583084
41
+ Macro Recall = 0.6259432734842572
42
+ Macro Precision = 0.7016666666666667
43
+ Macro F1 = 0.5839223245520098
test_eval_zh.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.6114 0.9220 0.7352 500
5
+ T 0.8415 0.4140 0.5550 500
6
+
7
+ accuracy 0.6680 1000
8
+ macro avg 0.7264 0.6680 0.6451 1000
9
+ weighted avg 0.7264 0.6680 0.6451 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.6612903225806451
14
+ Weighted Recall = 0.6612903225806451
15
+ Weighted Precision = 0.7413960513539756
16
+ Weighted F1 = 0.6599682707562137
17
+ Macro Recall = 0.700657894736842
18
+ Macro Precision = 0.7040133779264214
19
+ Macro F1 = 0.6612021857923498
20
+ ADV
21
+ Accuracy = 0.2
22
+ Weighted Recall = 0.2
23
+ Weighted Precision = 0.04
24
+ Weighted F1 = 0.06666666666666668
25
+ Macro Recall = 0.5
26
+ Macro Precision = 0.1
27
+ Macro F1 = 0.16666666666666669
28
+ NOUN
29
+ Accuracy = 0.723826714801444
30
+ Weighted Recall = 0.723826714801444
31
+ Weighted Precision = 0.7591106933955857
32
+ Weighted F1 = 0.7120394346574467
33
+ Macro Recall = 0.7188575899843506
34
+ Macro Precision = 0.7614629586351951
35
+ Macro F1 = 0.7104677973049137
36
+ VERB
37
+ Accuracy = 0.6098901098901099
38
+ Weighted Recall = 0.6098901098901099
39
+ Weighted Precision = 0.6805410050846157
40
+ Weighted F1 = 0.5581211411170925
41
+ Macro Recall = 0.5987669245647969
42
+ Macro Precision = 0.6841334234843363
43
+ Macro F1 = 0.5528565002249213
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sp_model_kwargs": {}, "do_lower_case": false, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": "/home/hh2/.cache/huggingface/transformers/7766c86e10505ed9b39af34e456480399bf06e35b36b8f2b917460a2dbe94e59.a984cf52fc87644bd4a2165f1e07e0ac880272c1e82d648b4674907056912bd7", "name_or_path": "xlm-roberta-large", "tokenizer_class": "XLMRobertaTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61ff4c2a1d7b51c9d410641f8154b006425ffb087197dafea5290b6af922442a
3
+ size 2811