--- library_name: peft tags: - parquet - text-classification datasets: - tweet_eval metrics: - accuracy base_model: bondi/bert-semaphore-prediction-w4 model-index: - name: bondi_bert-semaphore-prediction-w4-finetuned-lora-tweet_eval_irony results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: tweet_eval config: irony split: validation args: irony metrics: - type: accuracy value: 0.5895287958115183 name: accuracy --- # bondi_bert-semaphore-prediction-w4-finetuned-lora-tweet_eval_irony This model is a fine-tuned version of [bondi/bert-semaphore-prediction-w4](https://huggingface.co/bondi/bert-semaphore-prediction-w4) on the tweet_eval dataset. It achieves the following results on the evaluation set: - accuracy: 0.5895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | accuracy | train_loss | epoch | |:--------:|:----------:|:-----:| | 0.5120 | None | 0 | | 0.4974 | 0.7031 | 0 | | 0.5361 | 0.7025 | 1 | | 0.5403 | 0.6900 | 2 | | 0.5675 | 0.6759 | 3 | | 0.5770 | 0.6598 | 4 | | 0.5728 | 0.6459 | 5 | | 0.5937 | 0.6339 | 6 | | 0.5895 | 0.6216 | 7 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.15.2