--- library_name: peft tags: - parquet - text-classification datasets: - tweet_eval metrics: - accuracy base_model: jb2k/bert-base-multilingual-cased-language-detection model-index: - name: jb2k_bert-base-multilingual-cased-language-detection-finetuned-lora-tweet_eval_irony results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: tweet_eval config: irony split: validation args: irony metrics: - type: accuracy value: 0.5905759162303665 name: accuracy --- # jb2k_bert-base-multilingual-cased-language-detection-finetuned-lora-tweet_eval_irony This model is a fine-tuned version of [jb2k/bert-base-multilingual-cased-language-detection](https://huggingface.co/jb2k/bert-base-multilingual-cased-language-detection) on the tweet_eval dataset. It achieves the following results on the evaluation set: - accuracy: 0.5906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | accuracy | train_loss | epoch | |:--------:|:----------:|:-----:| | 0.4806 | None | 0 | | 0.5476 | 0.6896 | 0 | | 0.5654 | 0.6710 | 1 | | 0.5738 | 0.6549 | 2 | | 0.5770 | 0.6416 | 3 | | 0.5801 | 0.6325 | 4 | | 0.5853 | 0.6288 | 5 | | 0.5853 | 0.6242 | 6 | | 0.5906 | 0.6154 | 7 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.15.2