File size: 2,012 Bytes
7093fda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: agpl-3.0
library_name: peft
tags:
- parquet
- text-classification
datasets:
- tweet_eval
metrics:
- accuracy
base_model: vesteinn/XLMR-ENIS-finetuned-cola
model-index:
- name: vesteinn_XLMR-ENIS-finetuned-cola-finetuned-lora-tweet_eval_irony
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
config: irony
split: validation
args: irony
metrics:
- type: accuracy
value: 0.6408376963350786
name: accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vesteinn_XLMR-ENIS-finetuned-cola-finetuned-lora-tweet_eval_irony
This model is a fine-tuned version of [vesteinn/XLMR-ENIS-finetuned-cola](https://huggingface.co/vesteinn/XLMR-ENIS-finetuned-cola) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- accuracy: 0.6408
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| accuracy | train_loss | epoch |
|:--------:|:----------:|:-----:|
| 0.5424 | None | 0 |
| 0.5990 | 0.7131 | 0 |
| 0.5791 | 0.6680 | 1 |
| 0.6188 | 0.6512 | 2 |
| 0.6220 | 0.6311 | 3 |
| 0.6251 | 0.6118 | 4 |
| 0.5874 | 0.5950 | 5 |
| 0.6230 | 0.5831 | 6 |
| 0.6408 | 0.5857 | 7 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2 |