File size: 6,806 Bytes
e248ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
889883d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e248ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
---
library_name: transformers
tags:
- generated_from_trainer
- llama-cpp
- gguf-my-repo
license: apache-2.0
language:
- en
base_model: EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0
datasets:
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- Nopm/Opus_WritingStruct
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
- Gryphe/Sonnet3.5-Charcard-Roleplay
- Gryphe/ChatGPT-4o-Writing-Prompts
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- nothingiisreal/Reddit-Dirty-And-WritingPrompts
- allura-org/Celeste-1.x-data-mixture
- cognitivecomputations/dolphin-2.9.3
model-index:
- name: EVA-Qwen2.5-1.5B-FFT-v0.0
  results: []
---

# Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q5_K_M-GGUF
This model was converted to GGUF format from [`EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0`](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0) for more details on the model.

---
Model details:
-

  A small-scale RP/storywriting specialist model, full-parameter 
finetune of Qwen2.5-1.5B on mixture of synthetic and natural data.

  It uses Celeste 70B 0.1 data mixture, greatly expanding it to improve 
versatility, creativity and "flavor" of the resulting model.

  Unlike EVA-D 1.5B v0.0, this model was created without using 
DistillKit, and unlike other versions of EVA, Spectrum wasn't used 
either, since layer freezing is inefficient at small scale.





  

  

    Training data:
  

    
Celeste 70B 0.1 data mixture minus Opus Instruct subset. See that model's card for details.
Kalomaze's Opus_Instruct_25k dataset, filtered for refusals.
A subset (1k rows) of ChatGPT-4o-WritingPrompts by Gryphe
A subset (2k rows) of Sonnet3.5-Charcards-Roleplay by Gryphe
Synthstruct and SynthRP datasets by Epiculous
A subset from Dolphin-2.9.3, including filtered version of not_samantha and a small subset of systemchat.

  

     Training time and hardware:
  

      
9 hours on 4x3090Ti

  




  
Model was created by Kearm, Auri and Cahvay.

  
Special thanks:
to Cahvay for his work on investigating and reprocessing the 
corrupted dataset, removing the single biggest source of data poisoning.
to Gryphe, Lemmy, Kalomaze, Nopm, Epiculous and CognitiveComputations for the data
and to Allura-org for support, feedback, beta-testing and doing quality control of EVA models.





See axolotl config


axolotl version: 0.4.1


base_model: /media/kearm/Disk_2/HF_FAST_MoE_Fodder/Qwen2.5-1.5B

load_in_8bit: false
load_in_4bit: false
strict: false

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

# plugins:
#   - axolotl.integrations.spectrum.SpectrumPlugin

# spectrum_top_fraction: 0.5
# # Optional if using a pre-scanned model as your base_model. Useful if using a model mirror
# spectrum_model_name: Qwen/Qwen2.5-32B

datasets:
  - path: datasets/Celeste_Filtered_utf8fix.jsonl
    type: sharegpt
  - path: datasets/deduped_not_samantha_norefusals.jsonl
    type: sharegpt
  - path: datasets/deduped_SynthRP-Gens_processed_ShareGPT_converted_cleaned.jsonl
    type: sharegpt
  - path: datasets/deduped_Synthstruct-Gens_processed_sharegpt_converted_cleaned.jsonl
    type: sharegpt
  - path: datasets/Gryphe-4o-WP-filtered-sharegpt_utf8fix.jsonl
    type: sharegpt
  - path: datasets/Sonnet3-5-charcard-names-filtered-sharegpt_utf8fix.jsonl
    type: sharegpt
  - path: datasets/SystemChat_subset_filtered_sharegpt_utf8fix.jsonl
    type: sharegpt
  - path: datasets/S2.jsonl
    type: sharegpt
  - path: datasets/Turing.jsonl
    type: sharegpt

chat_template: chatml
shuffle_merged_datasets: true
val_set_size: 0.05
output_dir: EVA-Qwen2.5-1.5B-FFT-v0.0

sequence_len: 10240
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

# adapter: qlora
# lora_model_dir:
# lora_r: 64
# lora_alpha: 128
# lora_dropout: 0.05
# lora_target_linear: true
# peft_use_dora: true

wandb_project: EVA-Qwen2.5-1.5B-FFT-v0.0
wandb_entity:
wandb_watch:
wandb_name: Unit-00
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.000005
max_grad_norm: 1.5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: "unsloth"
gradient_checkpointing_kwargs:
   use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 4
save_safetensors: true
save_total_limit: 8
hub_model_id:
hub_strategy:
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.15
# fsdp:
#   - full_shard
#   - auto_wrap
# fsdp_config:
#   fsdp_limit_all_gathers: true
#   fsdp_sync_module_states: false
#   fsdp_offload_params: true
#   fsdp_cpu_ram_efficient_loading: true
#   fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
#   fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
#   fsdp_activation_checkpointing: true
#   fsdp_state_dict_type: SHARDED_STATE_DICT  # Changed from FULL_STATE_DICT
#   fsdp_sharding_strategy: FULL_SHARD
#   fsdp_forward_prefetch: false  # Added
#   fsdp_backward_prefetch: "BACKWARD_PRE"  # Added
#   fsdp_backward_prefetch_limit: 1  # Added
#   fsdp_mixed_precision: BF16  # Added

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q5_K_M-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q5_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q5_K_M-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q5_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q5_K_M-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q5_K_M-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q5_k_m.gguf -c 2048
```