Triangle104
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -28,6 +28,189 @@ model-index:
|
|
28 |
This model was converted to GGUF format from [`EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0`](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
29 |
Refer to the [original model card](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0) for more details on the model.
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
## Use with llama.cpp
|
32 |
Install llama.cpp through brew (works on Mac and Linux)
|
33 |
|
|
|
28 |
This model was converted to GGUF format from [`EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0`](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
29 |
Refer to the [original model card](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0) for more details on the model.
|
30 |
|
31 |
+
---
|
32 |
+
Model details:
|
33 |
+
-
|
34 |
+
|
35 |
+
A small-scale RP/storywriting specialist model, full-parameter
|
36 |
+
finetune of Qwen2.5-1.5B on mixture of synthetic and natural data.
|
37 |
+
|
38 |
+
It uses Celeste 70B 0.1 data mixture, greatly expanding it to improve
|
39 |
+
versatility, creativity and "flavor" of the resulting model.
|
40 |
+
|
41 |
+
Unlike EVA-D 1.5B v0.0, this model was created without using
|
42 |
+
DistillKit, and unlike other versions of EVA, Spectrum wasn't used
|
43 |
+
either, since layer freezing is inefficient at small scale.
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
Training data:
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
Celeste 70B 0.1 data mixture minus Opus Instruct subset. See that model's card for details.
|
58 |
+
Kalomaze's Opus_Instruct_25k dataset, filtered for refusals.
|
59 |
+
A subset (1k rows) of ChatGPT-4o-WritingPrompts by Gryphe
|
60 |
+
A subset (2k rows) of Sonnet3.5-Charcards-Roleplay by Gryphe
|
61 |
+
Synthstruct and SynthRP datasets by Epiculous
|
62 |
+
A subset from Dolphin-2.9.3, including filtered version of not_samantha and a small subset of systemchat.
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
Training time and hardware:
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
9 hours on 4x3090Ti
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
Model was created by Kearm, Auri and Cahvay.
|
79 |
+
|
80 |
+
|
81 |
+
Special thanks:
|
82 |
+
to Cahvay for his work on investigating and reprocessing the
|
83 |
+
corrupted dataset, removing the single biggest source of data poisoning.
|
84 |
+
to Gryphe, Lemmy, Kalomaze, Nopm, Epiculous and CognitiveComputations for the data
|
85 |
+
and to Allura-org for support, feedback, beta-testing and doing quality control of EVA models.
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
See axolotl config
|
92 |
+
|
93 |
+
|
94 |
+
axolotl version: 0.4.1
|
95 |
+
|
96 |
+
|
97 |
+
base_model: /media/kearm/Disk_2/HF_FAST_MoE_Fodder/Qwen2.5-1.5B
|
98 |
+
|
99 |
+
load_in_8bit: false
|
100 |
+
load_in_4bit: false
|
101 |
+
strict: false
|
102 |
+
|
103 |
+
plugins:
|
104 |
+
- axolotl.integrations.liger.LigerPlugin
|
105 |
+
liger_rope: true
|
106 |
+
liger_rms_norm: true
|
107 |
+
liger_swiglu: true
|
108 |
+
liger_fused_linear_cross_entropy: true
|
109 |
+
|
110 |
+
# plugins:
|
111 |
+
# - axolotl.integrations.spectrum.SpectrumPlugin
|
112 |
+
|
113 |
+
# spectrum_top_fraction: 0.5
|
114 |
+
# # Optional if using a pre-scanned model as your base_model. Useful if using a model mirror
|
115 |
+
# spectrum_model_name: Qwen/Qwen2.5-32B
|
116 |
+
|
117 |
+
datasets:
|
118 |
+
- path: datasets/Celeste_Filtered_utf8fix.jsonl
|
119 |
+
type: sharegpt
|
120 |
+
- path: datasets/deduped_not_samantha_norefusals.jsonl
|
121 |
+
type: sharegpt
|
122 |
+
- path: datasets/deduped_SynthRP-Gens_processed_ShareGPT_converted_cleaned.jsonl
|
123 |
+
type: sharegpt
|
124 |
+
- path: datasets/deduped_Synthstruct-Gens_processed_sharegpt_converted_cleaned.jsonl
|
125 |
+
type: sharegpt
|
126 |
+
- path: datasets/Gryphe-4o-WP-filtered-sharegpt_utf8fix.jsonl
|
127 |
+
type: sharegpt
|
128 |
+
- path: datasets/Sonnet3-5-charcard-names-filtered-sharegpt_utf8fix.jsonl
|
129 |
+
type: sharegpt
|
130 |
+
- path: datasets/SystemChat_subset_filtered_sharegpt_utf8fix.jsonl
|
131 |
+
type: sharegpt
|
132 |
+
- path: datasets/S2.jsonl
|
133 |
+
type: sharegpt
|
134 |
+
- path: datasets/Turing.jsonl
|
135 |
+
type: sharegpt
|
136 |
+
|
137 |
+
chat_template: chatml
|
138 |
+
shuffle_merged_datasets: true
|
139 |
+
val_set_size: 0.05
|
140 |
+
output_dir: EVA-Qwen2.5-1.5B-FFT-v0.0
|
141 |
+
|
142 |
+
sequence_len: 10240
|
143 |
+
sample_packing: true
|
144 |
+
eval_sample_packing: false
|
145 |
+
pad_to_sequence_len: true
|
146 |
+
|
147 |
+
# adapter: qlora
|
148 |
+
# lora_model_dir:
|
149 |
+
# lora_r: 64
|
150 |
+
# lora_alpha: 128
|
151 |
+
# lora_dropout: 0.05
|
152 |
+
# lora_target_linear: true
|
153 |
+
# peft_use_dora: true
|
154 |
+
|
155 |
+
wandb_project: EVA-Qwen2.5-1.5B-FFT-v0.0
|
156 |
+
wandb_entity:
|
157 |
+
wandb_watch:
|
158 |
+
wandb_name: Unit-00
|
159 |
+
wandb_log_model:
|
160 |
+
|
161 |
+
gradient_accumulation_steps: 8
|
162 |
+
micro_batch_size: 1
|
163 |
+
num_epochs: 3
|
164 |
+
optimizer: paged_adamw_8bit
|
165 |
+
lr_scheduler: cosine
|
166 |
+
learning_rate: 0.000005
|
167 |
+
max_grad_norm: 1.5
|
168 |
+
|
169 |
+
train_on_inputs: false
|
170 |
+
group_by_length: false
|
171 |
+
bf16: auto
|
172 |
+
fp16:
|
173 |
+
tf32: false
|
174 |
+
|
175 |
+
gradient_checkpointing: "unsloth"
|
176 |
+
gradient_checkpointing_kwargs:
|
177 |
+
use_reentrant: true
|
178 |
+
early_stopping_patience:
|
179 |
+
resume_from_checkpoint:
|
180 |
+
local_rank:
|
181 |
+
logging_steps: 1
|
182 |
+
xformers_attention:
|
183 |
+
flash_attention: true
|
184 |
+
|
185 |
+
warmup_steps: 20
|
186 |
+
evals_per_epoch: 4
|
187 |
+
saves_per_epoch: 4
|
188 |
+
save_safetensors: true
|
189 |
+
save_total_limit: 8
|
190 |
+
hub_model_id:
|
191 |
+
hub_strategy:
|
192 |
+
debug:
|
193 |
+
deepspeed: deepspeed_configs/zero3_bf16.json
|
194 |
+
weight_decay: 0.15
|
195 |
+
# fsdp:
|
196 |
+
# - full_shard
|
197 |
+
# - auto_wrap
|
198 |
+
# fsdp_config:
|
199 |
+
# fsdp_limit_all_gathers: true
|
200 |
+
# fsdp_sync_module_states: false
|
201 |
+
# fsdp_offload_params: true
|
202 |
+
# fsdp_cpu_ram_efficient_loading: true
|
203 |
+
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
|
204 |
+
# fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
|
205 |
+
# fsdp_activation_checkpointing: true
|
206 |
+
# fsdp_state_dict_type: SHARDED_STATE_DICT # Changed from FULL_STATE_DICT
|
207 |
+
# fsdp_sharding_strategy: FULL_SHARD
|
208 |
+
# fsdp_forward_prefetch: false # Added
|
209 |
+
# fsdp_backward_prefetch: "BACKWARD_PRE" # Added
|
210 |
+
# fsdp_backward_prefetch_limit: 1 # Added
|
211 |
+
# fsdp_mixed_precision: BF16 # Added
|
212 |
+
|
213 |
+
---
|
214 |
## Use with llama.cpp
|
215 |
Install llama.cpp through brew (works on Mac and Linux)
|
216 |
|