File size: 4,264 Bytes
fb29b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bf3622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb29b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
library_name: transformers
license: apache-2.0
datasets:
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- Nopm/Opus_WritingStruct
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
- Gryphe/Sonnet3.5-Charcard-Roleplay
- Gryphe/ChatGPT-4o-Writing-Prompts
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- nothingiisreal/Reddit-Dirty-And-WritingPrompts
- allura-org/Celeste-1.x-data-mixture
- cognitivecomputations/dolphin-2.9.3
base_model: EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2
tags:
- generated_from_trainer
- llama-cpp
- gguf-my-repo
model-index:
- name: EVA-Qwen2.5-32B-SFFT-v0.1
  results: []
---

# Triangle104/EVA-Qwen2.5-32B-v0.2-Q5_K_S-GGUF
This model was converted to GGUF format from [`EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2`](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2) for more details on the model.

---
Model details:
-
  A RP/storywriting specialist model, full-parameter finetune of Qwen2.5-32B on mixture of synthetic and natural data.

  It uses Celeste 70B 0.1 data mixture, greatly expanding it to improve 
versatility, creativity and "flavor" of the resulting model.





Dedicated to Nev.



Version notes for 0.2: Basically, reprocessed the whole 
dataset again, due to a severe mistake in previously used pipeline, 
which left the data poisoned with a lot of non-unicode characters. Now, 
no more weird generation artifacts, and more stability. Major kudos to 
Cahvay for his work on fixing this critical issue.




  
Prompt format is ChatML.


  
Recommended sampler values:

  
Temperature: 1
Min-P: 0.05
Top-A: 0.2
Repetition Penalty: 1.03

  
  
Recommended SillyTavern presets (via CalamitousFelicitousness):



Context
Instruct and System Prompt




  

  

    Training data:
  

    
Celeste 70B 0.1 data mixture minus Opus Instruct subset. See that model's card for details.
Kalomaze's Opus_Instruct_25k dataset, filtered for refusals.
A subset (1k rows) of ChatGPT-4o-WritingPrompts by Gryphe
A subset (2k rows) of Sonnet3.5-Charcards-Roleplay by Gryphe
Synthstruct and SynthRP datasets by Epiculous
A subset from Dolphin-2.9.3, including filtered version of not_samantha and a small subset of systemchat.

  

     Training time and hardware:
  

      
7 hours on 8xH100 SXM, provided by FeatherlessAI





  
Model was created by Kearm, Auri and Cahvay.

  
Special thanks:
to Cahvay for his work on investigating and reprocessing the 
corrupted dataset, removing the single biggest source of data poisoning.
to FeatherlessAI for generously providing 8xH100 SXM node for training of this model
to Gryphe, Lemmy, Kalomaze, Nopm, Epiculous and CognitiveComputations for the data
and to Allura-org for support, feedback, beta-testing and doing quality control of EVA models.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/EVA-Qwen2.5-32B-v0.2-Q5_K_S-GGUF --hf-file eva-qwen2.5-32b-v0.2-q5_k_s.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/EVA-Qwen2.5-32B-v0.2-Q5_K_S-GGUF --hf-file eva-qwen2.5-32b-v0.2-q5_k_s.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/EVA-Qwen2.5-32B-v0.2-Q5_K_S-GGUF --hf-file eva-qwen2.5-32b-v0.2-q5_k_s.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/EVA-Qwen2.5-32B-v0.2-Q5_K_S-GGUF --hf-file eva-qwen2.5-32b-v0.2-q5_k_s.gguf -c 2048
```