Triangle104 commited on
Commit
cad706e
·
verified ·
1 Parent(s): 2edb325

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +154 -0
README.md CHANGED
@@ -10,6 +10,160 @@ tags:
10
  This model was converted to GGUF format from [`FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview`](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
11
  Refer to the [original model card](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) for more details on the model.
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ## Use with llama.cpp
14
  Install llama.cpp through brew (works on Mac and Linux)
15
 
 
10
  This model was converted to GGUF format from [`FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview`](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
11
  Refer to the [original model card](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) for more details on the model.
12
 
13
+ ---
14
+ Overview
15
+ -
16
+
17
+ FuseO1-Preview
18
+ is our initial endeavor to enhance the System-II reasoning capabilities
19
+ of large language models (LLMs) through innovative model fusion
20
+ techniques. By employing our advanced SCE
21
+ merging methodologies, we integrate multiple open-source o1-like LLMs
22
+ into a unified model. Our goal is to incorporate the distinct knowledge
23
+ and strengths from different reasoning LLMs into a single, unified model
24
+ with strong System-II reasoning abilities, particularly in mathematics,
25
+ coding, and science domains.
26
+
27
+ To achieve this, we conduct two types of model merging:
28
+
29
+
30
+ Long-Long Reasoning Merging: This approach involves
31
+ model fusion across LLMs that utilize long-CoT reasoning, with the goal
32
+ of enhancing long-CoT reasoning capabilities. The resulted FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview achieves a Pass@1 accuracy of 74.0 on AIME24,
33
+ demonstrating significant performance improvements compared to the
34
+ OpenAI o1-preview (44.6) and OpenAI o1-mini (63.4), even approaching
35
+ OpenAI o1 (79.2).
36
+ Long-Short Reasoning Merging: This approach
37
+ involves model fusion between long-CoT and short-CoT LLMs, aiming to
38
+ improve reasoning capabilities in both long and short reasoning
39
+ processes. The resulted FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview and FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview
40
+ is capable of utilizing both long and short reasoning processes and
41
+ demonstrates relatively strong performance in long reasoning tasks.
42
+
43
+ Long-Long Reasoning Merging
44
+
45
+
46
+
47
+
48
+ We conduct experiments on these folloing long-cot LLMs.
49
+
50
+
51
+ deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
52
+ Qwen/QwQ-32B-Preview
53
+ NovaSky-AI/Sky-T1-32B-Preview
54
+
55
+
56
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview model, using the script below.
57
+
58
+
59
+ cd FuseAI/FuseO1-Preview/mergekit
60
+ pip3 install -e .
61
+ model_save_dir=xx # your path to save the merged models
62
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview --cudas
63
+
64
+
65
+
66
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview model, using the script below.
67
+
68
+
69
+ cd FuseAI/FuseO1-Preview/mergekit
70
+ pip3 install -e .
71
+ model_save_dir=xxx # your path to save the merged models
72
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-32B-Preview --cuda
73
+
74
+
75
+
76
+ We provide the example code to use FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.
77
+
78
+
79
+ from vllm import LLM, SamplingParams
80
+
81
+ llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview", tensor_parallel_size=8)
82
+ sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643])
83
+
84
+ conversations = [
85
+ [
86
+ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."},
87
+ {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
88
+ ],
89
+ ]
90
+
91
+ responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True)
92
+
93
+ for response in responses:
94
+ print(response.outputs[0].text.strip())
95
+
96
+
97
+
98
+
99
+
100
+
101
+
102
+
103
+ Long-Short Reasoning Merging
104
+
105
+
106
+
107
+
108
+ We conduct experiments on these folloing long-cot and short-cot LLMs.
109
+
110
+
111
+ deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
112
+ Qwen/Qwen2.5-32B-Instruct
113
+ Qwen/Qwen2.5-32B-Coder
114
+
115
+
116
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview model, using the script below.
117
+
118
+
119
+ cd FuseAI/FuseO1-Preview/mergekit
120
+ pip3 install -e .
121
+ model_save_dir=xxx # your path to save the merged models
122
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview --cuda
123
+
124
+
125
+
126
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview model, using the script below.
127
+
128
+
129
+ cd FuseAI/FuseO1-Preview/mergekit
130
+ pip3 install -e .
131
+ model_save_dir=xxx # your path to save the merged models
132
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview --cuda
133
+
134
+
135
+
136
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview model, using the script below.
137
+
138
+
139
+ cd FuseAI/FuseO1-Preview/mergekit
140
+ pip3 install -e .
141
+ model_save_dir=xxx # your path to save the merged models
142
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview --cuda
143
+
144
+
145
+
146
+ We provide the code to use FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.
147
+
148
+
149
+ from vllm import LLM, SamplingParams
150
+
151
+ llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview", tensor_parallel_size=8)
152
+ sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643])
153
+
154
+ conversations = [
155
+ [
156
+ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."},
157
+ {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
158
+ ],
159
+ ]
160
+
161
+ responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True)
162
+
163
+ for response in responses:
164
+ print(response.outputs[0].text.strip())
165
+
166
+ ---
167
  ## Use with llama.cpp
168
  Install llama.cpp through brew (works on Mac and Linux)
169