--- library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo base_model: bunnycore/Phi-3.5-mini-TitanFusion-0.1 model-index: - name: Phi-3.5-mini-TitanFusion-0.1 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 52.28 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 35.45 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 6.19 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 10.85 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 15.8 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 31.18 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard --- # Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q4_K_S-GGUF This model was converted to GGUF format from [`bunnycore/Phi-3.5-mini-TitanFusion-0.1`](https://huggingface.co/bunnycore/Phi-3.5-mini-TitanFusion-0.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/bunnycore/Phi-3.5-mini-TitanFusion-0.1) for more details on the model. --- Model details: - This is a merged pre-trained language model created using the TIES merge method. It is based on the microsoft/Phi-3.5-mini-instruct model and incorporates the knowledge and capabilities of the nbeerbower/phi3.5-gutenberg-4B and ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1 models. Capabilities: Roleplay: The model can engage in role-playing scenarios, taking on different personas and responding to prompts in a character-appropriate manner. Creative Writing: It can assist in creative writing tasks, such as brainstorming ideas, generating plotlines, or developing characters. Reasoning: The model can reason about information and draw conclusions based on the data it has been trained on. This is a merge of pre-trained language models created using mergekit. Merge Details Merge Method This model was merged using the TIES merge method using microsoft/Phi-3.5-mini-instruct as a base. Models Merged The following models were included in the merge: nbeerbower/phi3.5-gutenberg-4B ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1 Configuration The following YAML configuration was used to produce this model: models: - model: ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1 parameters: weight: 1 - model: nbeerbower/phi3.5-gutenberg-4B parameters: weight: 1 merge_method: ties base_model: microsoft/Phi-3.5-mini-instruct parameters: density: 1 normalize: true int8_mask: true dtype: bfloat16 --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q4_K_S-GGUF --hf-file phi-3.5-mini-titanfusion-0.1-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q4_K_S-GGUF --hf-file phi-3.5-mini-titanfusion-0.1-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q4_K_S-GGUF --hf-file phi-3.5-mini-titanfusion-0.1-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q4_K_S-GGUF --hf-file phi-3.5-mini-titanfusion-0.1-q4_k_s.gguf -c 2048 ```