Triangle104 commited on
Commit
d31045f
Β·
verified Β·
1 Parent(s): 72fc7cd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +156 -0
README.md CHANGED
@@ -16,6 +16,162 @@ base_model: WangCa/Qwen2.5-7B-Medicine
16
  This model was converted to GGUF format from [`WangCa/Qwen2.5-7B-Medicine`](https://huggingface.co/WangCa/Qwen2.5-7B-Medicine) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
17
  Refer to the [original model card](https://huggingface.co/WangCa/Qwen2.5-7B-Medicine) for more details on the model.
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  ## Use with llama.cpp
20
  Install llama.cpp through brew (works on Mac and Linux)
21
 
 
16
  This model was converted to GGUF format from [`WangCa/Qwen2.5-7B-Medicine`](https://huggingface.co/WangCa/Qwen2.5-7B-Medicine) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
17
  Refer to the [original model card](https://huggingface.co/WangCa/Qwen2.5-7B-Medicine) for more details on the model.
18
 
19
+ ---
20
+ Model Description
21
+ -
22
+
23
+
24
+
25
+ Qwen2.5-7B-Instruct-Medical is a medical domain-specific model
26
+ fine-tuned from the Qwen2.5-7B-Instruct model using 340,000 medical
27
+ dialogue samples. This model is optimized to provide accurate and
28
+ contextually relevant responses to medical-related inquiries, making it
29
+ an excellent choice for healthcare applications such as medical
30
+ chatbots, decision support systems, and educational tools.
31
+
32
+
33
+
34
+
35
+
36
+
37
+
38
+ Model Details
39
+ -
40
+
41
+
42
+ Base Model: Qwen2.5-7B-Instruct
43
+ Fine-tuning Dataset: 340,000 medical dialogue samples
44
+ Training Duration: 51 hours
45
+ Hardware Used: 6x NVIDIA RTX 3090 (24GB VRAM)
46
+ Optimization Algorithm: AdamW
47
+ Training Method: LoRA (Low-Rank Adaptation)
48
+ Training Framework: PyTorch
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+ Performance
57
+ -
58
+
59
+
60
+ BLEU-4 Score:
61
+ Base Model: 23.5 (on a test set of 500 samples)
62
+ Fine-tuned Model: 55.7 (on the same test set)
63
+
64
+
65
+
66
+
67
+ This shows a significant improvement in the model's ability to
68
+ generate more fluent and contextually relevant responses after
69
+ fine-tuning on the medical dialogue dataset.
70
+
71
+
72
+
73
+
74
+
75
+
76
+
77
+ Intended Use
78
+ -
79
+
80
+
81
+ This model is specifically tailored for medical dialogue tasks and can be used for:
82
+
83
+
84
+ Medical question answering
85
+ Healthcare chatbots
86
+ Clinical decision support systems
87
+ Medical education and training
88
+
89
+
90
+
91
+
92
+
93
+
94
+
95
+ Performance
96
+ -
97
+
98
+
99
+ The model exhibits a strong understanding of medical terminology,
100
+ clinical contexts, and patient interactions, making it a powerful tool
101
+ for applications in healthcare and medical research.
102
+
103
+
104
+
105
+
106
+
107
+
108
+
109
+ Usage
110
+ -
111
+
112
+
113
+ To use this model, you can load it using the transformers library in Python:
114
+
115
+
116
+ from transformers import AutoModelForCausalLM, AutoTokenizer
117
+
118
+ model = AutoModelForCausalLM.from_pretrained("path_to_model")
119
+ tokenizer = AutoTokenizer.from_pretrained("path_to_model")
120
+
121
+ input_text = "What are the symptoms of diabetes?"
122
+ inputs = tokenizer(input_text, return_tensors="pt")
123
+ output = model.generate(**inputs)
124
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
125
+ <
126
+
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+ Limitations
135
+ -
136
+
137
+
138
+ While this model has been fine-tuned on a medical dialogue dataset,
139
+ it may still make errors or provide inaccurate responses in highly
140
+ specialized medical domains or cases where the input data falls outside
141
+ the training data's coverage. Always ensure human supervision in
142
+ critical healthcare scenarios.
143
+
144
+
145
+
146
+
147
+
148
+
149
+
150
+ License
151
+ -
152
+
153
+
154
+
155
+ This model is released under the MIT License.
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+ Acknowledgements
164
+ -
165
+
166
+
167
+
168
+ Dataset: 340,000 medical dialogues (From Modelscope).
169
+ LoRA (Low-Rank Adaptation): This technique was used to efficiently
170
+ fine-tune the model without modifying the full parameter set, allowing
171
+ for faster and more memory-efficient training.
172
+
173
+ ---
174
+
175
  ## Use with llama.cpp
176
  Install llama.cpp through brew (works on Mac and Linux)
177