Triangle104 commited on
Commit
95b834f
·
verified ·
1 Parent(s): faf9e9b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md CHANGED
@@ -19,6 +19,112 @@ tags:
19
  This model was converted to GGUF format from [`prithivMLmods/Viper-Coder-HybridMini-v1.3`](https://huggingface.co/prithivMLmods/Viper-Coder-HybridMini-v1.3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
20
  Refer to the [original model card](https://huggingface.co/prithivMLmods/Viper-Coder-HybridMini-v1.3) for more details on the model.
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  ## Use with llama.cpp
23
  Install llama.cpp through brew (works on Mac and Linux)
24
 
 
19
  This model was converted to GGUF format from [`prithivMLmods/Viper-Coder-HybridMini-v1.3`](https://huggingface.co/prithivMLmods/Viper-Coder-HybridMini-v1.3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
20
  Refer to the [original model card](https://huggingface.co/prithivMLmods/Viper-Coder-HybridMini-v1.3) for more details on the model.
21
 
22
+ ---
23
+ Viper-Coder-HybridMini-v1.3
24
+ -
25
+
26
+
27
+ Viper-Coder-HybridMini-v1.3 is based on the Qwen 2.5 7B modality architecture, designed to be the best
28
+ for coding and reasoning tasks. It has been fine-tuned on a synthetic
29
+ dataset leveraging the latest coding logits and CoT datasets, further
30
+ optimizing its chain-of-thought (CoT) reasoning and logical problem-solving abilities. The model demonstrates significant improvements in context understanding, structured data processing, and long-context comprehension, making it ideal for complex coding tasks, instruction-following, and text generation.
31
+
32
+
33
+
34
+
35
+
36
+
37
+
38
+ Key Improvements
39
+ -
40
+
41
+
42
+ Best-in-Class Coding Proficiency: Enhanced understanding of programming languages, debugging, and code generation.
43
+ Fine-Tuned Instruction Following: Optimized for precise responses, structured outputs (e.g., JSON, YAML), and extended text generation (8K+ tokens).
44
+ Advanced Logical & Mathematical Reasoning: Improved multi-step problem-solving and theorem proving.
45
+ Long-Context Mastery: Handles up to 128K tokens with an output capability of 8K tokens per response.
46
+ Multilingual Code Support: Excels in Python, JavaScript, C++, Java, SQL, and other major programming languages, with documentation in 29+ languages.
47
+
48
+
49
+
50
+
51
+
52
+
53
+
54
+ Quickstart with Transformers
55
+ -
56
+
57
+
58
+ from transformers import AutoModelForCausalLM, AutoTokenizer
59
+
60
+ model_name = "prithivMLmods/Viper-Coder-HybridMini-v1.3"
61
+
62
+ model = AutoModelForCausalLM.from_pretrained(
63
+ model_name,
64
+ torch_dtype="auto",
65
+ device_map="auto",
66
+ trust_remote_code=True
67
+ )
68
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
69
+
70
+ prompt = "Write a Python function to merge two sorted lists."
71
+ messages = [
72
+ {"role": "system", "content": "You are an advanced AI assistant with expert-level coding and reasoning abilities."},
73
+ {"role": "user", "content": prompt}
74
+ ]
75
+ text = tokenizer.apply_chat_template(
76
+ messages,
77
+ tokenize=False,
78
+ add_generation_prompt=True
79
+ )
80
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
81
+
82
+ generated_ids = model.generate(
83
+ **model_inputs,
84
+ max_new_tokens=512
85
+ )
86
+ generated_ids = [
87
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
88
+ ]
89
+
90
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
91
+ print(response)
92
+
93
+
94
+
95
+
96
+
97
+
98
+
99
+
100
+ Intended Use
101
+ -
102
+
103
+
104
+ Elite Coding & Debugging: Best-in-class model for writing, analyzing, and optimizing code.
105
+ Complex Algorithmic Reasoning: Solves intricate logic problems and algorithm-based challenges.
106
+ Scientific & Mathematical Computation: Advanced support for formulas, equations, and theorem verification.
107
+ Structured Data Processing: Seamlessly handles JSON, XML, SQL, and data pipeline automation.
108
+ Multilingual Programming Support: Proficient in Python, JavaScript, C++, Java, Go, and more.
109
+ Extended Technical Content Generation: Ideal for writing documentation, research papers, and technical blogs.
110
+
111
+
112
+
113
+
114
+
115
+
116
+
117
+ Limitations
118
+ -
119
+
120
+
121
+ Moderate Computational Demand: Requires GPUs/TPUs for smooth inference due to 7B parameters, but more lightweight than larger models.
122
+ Language-Specific Variability: Performance may vary across different programming languages.
123
+ Possible Error Propagation: Extended text outputs might introduce logical inconsistencies.
124
+ Limited Real-World Awareness: The model does not have access to real-time internet updates.
125
+ Prompt Sensitivity: Performance depends on how well the prompt is structured.
126
+
127
+ ---
128
  ## Use with llama.cpp
129
  Install llama.cpp through brew (works on Mac and Linux)
130