File size: 2,231 Bytes
21d175c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21e7a62
 
 
 
 
 
21d175c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
base_model: arcee-ai/Virtuoso-Medium-v2
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
license: apache-2.0
---

# Triangle104/Virtuoso-Medium-v2-Q3_K_L-GGUF
This model was converted to GGUF format from [`arcee-ai/Virtuoso-Medium-v2`](https://huggingface.co/arcee-ai/Virtuoso-Medium-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/arcee-ai/Virtuoso-Medium-v2) for more details on the model.

---
Model details:
-
Virtuoso-Medium-v2 (32B) is our next-generation, 32-billion-parameter language model that builds upon the original Virtuoso-Medium architecture. This version is distilled from Deepseek-v3, leveraging an expanded dataset of 5B+ tokens worth of logits. It achieves higher benchmark scores than our previous release (including surpassing Arcee-Nova 2024 in certain tasks).

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Virtuoso-Medium-v2-Q3_K_L-GGUF --hf-file virtuoso-medium-v2-q3_k_l.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Virtuoso-Medium-v2-Q3_K_L-GGUF --hf-file virtuoso-medium-v2-q3_k_l.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Virtuoso-Medium-v2-Q3_K_L-GGUF --hf-file virtuoso-medium-v2-q3_k_l.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Virtuoso-Medium-v2-Q3_K_L-GGUF --hf-file virtuoso-medium-v2-q3_k_l.gguf -c 2048
```