Trisert commited on
Commit
0417946
·
verified ·
1 Parent(s): e888e89

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - NousResearch/Hermes-2-Theta-Llama-3-8B
4
+ - mlabonne/NeuralDaredevil-8B-abliterated
5
+ - cognitivecomputations/dolphin-2.9.3-llama-3-8b
6
+ tags:
7
+ - merge
8
+ - mergekit
9
+ - lazymergekit
10
+ - NousResearch/Hermes-2-Theta-Llama-3-8B
11
+ - mlabonne/NeuralDaredevil-8B-abliterated
12
+ - cognitivecomputations/dolphin-2.9.3-llama-3-8b
13
+ ---
14
+
15
+ # NeuralPipe-7B-slerp
16
+
17
+ NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
18
+ * [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B)
19
+ * [mlabonne/NeuralDaredevil-8B-abliterated](https://huggingface.co/mlabonne/NeuralDaredevil-8B-abliterated)
20
+ * [cognitivecomputations/dolphin-2.9.3-llama-3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9.3-llama-3-8b)
21
+
22
+ ## 🧩 Configuration
23
+
24
+ ```yaml
25
+ models:
26
+ - model: meta-llama/Meta-Llama-3-8B-Instruct
27
+ - model: NousResearch/Hermes-2-Theta-Llama-3-8B
28
+ parameters:
29
+ density: 0.53
30
+ weight: 0.4
31
+ - model: mlabonne/NeuralDaredevil-8B-abliterated
32
+ parameters:
33
+ density: 0.56
34
+ weight: 0.4
35
+ - model: cognitivecomputations/dolphin-2.9.3-llama-3-8b
36
+ parameters:
37
+ density: 0.53
38
+ weight: 0.3
39
+ merge_method: dare_ties
40
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
41
+ parameters:
42
+ int8_mask: true
43
+ dtype: bfloat16
44
+ ```
45
+
46
+ ## 💻 Usage
47
+
48
+ ```python
49
+ !pip install -qU transformers accelerate
50
+
51
+ from transformers import AutoTokenizer
52
+ import transformers
53
+ import torch
54
+
55
+ model = "Trisert/NeuralPipe-7B-slerp"
56
+ messages = [{"role": "user", "content": "What is a large language model?"}]
57
+
58
+ tokenizer = AutoTokenizer.from_pretrained(model)
59
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
60
+ pipeline = transformers.pipeline(
61
+ "text-generation",
62
+ model=model,
63
+ torch_dtype=torch.float16,
64
+ device_map="auto",
65
+ )
66
+
67
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
68
+ print(outputs[0]["generated_text"])
69
+ ```