--- license: mit base_model: xlnet-large-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlnet-large-cased-detect-dep-v5 results: [] --- # xlnet-large-cased-detect-dep-v5 This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5925 - Accuracy: 0.73 - F1: 0.7991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6442 | 1.0 | 751 | 0.5586 | 0.733 | 0.8150 | | 0.6032 | 2.0 | 1502 | 0.5649 | 0.743 | 0.8163 | | 0.5574 | 3.0 | 2253 | 0.5397 | 0.754 | 0.8148 | | 0.5368 | 4.0 | 3004 | 0.6118 | 0.727 | 0.8062 | | 0.5123 | 5.0 | 3755 | 0.5925 | 0.73 | 0.7991 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3