--- license: mit base_model: microsoft/xtremedistil-l6-h384-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_trainer results: [] --- # test_trainer This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1134 - Accuracy: 0.9770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 24 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 0.6990 | 0.4967 | | No log | 2.0 | 20 | 0.6889 | 0.4967 | | No log | 3.0 | 30 | 0.6503 | 0.7697 | | No log | 4.0 | 40 | 0.4720 | 0.9276 | | No log | 5.0 | 50 | 0.3175 | 0.9572 | | No log | 6.0 | 60 | 0.2181 | 0.9770 | | No log | 7.0 | 70 | 0.1761 | 0.9770 | | No log | 8.0 | 80 | 0.1551 | 0.9770 | | No log | 9.0 | 90 | 0.1427 | 0.9770 | | No log | 10.0 | 100 | 0.1345 | 0.9770 | | No log | 11.0 | 110 | 0.1341 | 0.9737 | | No log | 12.0 | 120 | 0.1240 | 0.9770 | | No log | 13.0 | 130 | 0.1214 | 0.9770 | | No log | 14.0 | 140 | 0.1182 | 0.9770 | | No log | 15.0 | 150 | 0.1164 | 0.9770 | | No log | 16.0 | 160 | 0.1149 | 0.9770 | | No log | 17.0 | 170 | 0.1141 | 0.9770 | | No log | 18.0 | 180 | 0.1131 | 0.9770 | | No log | 19.0 | 190 | 0.1127 | 0.9770 | | No log | 20.0 | 200 | 0.1121 | 0.9770 | | No log | 21.0 | 210 | 0.1119 | 0.9770 | | No log | 22.0 | 220 | 0.1117 | 0.9770 | | No log | 23.0 | 230 | 0.1128 | 0.9770 | | No log | 24.0 | 240 | 0.1134 | 0.9770 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0