File size: 1,137 Bytes
8cfeacf 8e61c1f 8cfeacf 8e61c1f 8cfeacf 8e61c1f 8cfeacf 8e61c1f 8cfeacf 8e61c1f 8cfeacf 8e61c1f 8cfeacf 8e61c1f 8cfeacf 8e61c1f 8cfeacf 8e61c1f 8cfeacf 8e61c1f 8cfeacf b0979cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
Dummy Model for Lab4
This model is a fine-tuned version of bert-base-uncased on SST-2 dataset.
Results of the evaluation set:
Accuracy: 0.64
This model was fine-tuneded for personal research usage.
with randomly selected 100 training datas and 100 evaluation datas from SST-2 dataset.
# Evaluation
import evaluate
predictions = trainer.predict(Resrt_eval)
print(predictions.predictions.shape, predictions.label_ids.shape)
preds = np.argmax(predictions.predictions, axis=-1)
metric = evaluate.load("glue", "sst2")
metric.compute(predictions=preds, references=predictions.label_ids)
Training hyperparameters
The following hyperparameters were used during training:
learning_rate: unset
train_batch_size: unset
eval_batch_size: unset
seed of training dataset: 49282927487
seed of evaluation dataset:492829487
lr_scheduler_type: linear
num_epochs: 3.0
Training results
Epoch Training Loss Validation Loss
1 No log 0.674658 0.480000
2 No log 0.640980 0.600000
3 No log 0.640266 0.640000
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65e812f328ebe0129dd9a2b4/mxsW8uXzCJrVbmamFFfqy.png)
|