---
language:
- ko
- en
library_name: transformers
license: cc-by-nc-sa-4.0
pipeline_tag: text-generation
tags:
- pytorch
---
# Model Card for RedWhale-tv-10.8B-v1.0
## Model Description
**RedWhale**은 전처리한 한국어 Corpus, 특화된 한국어 Tokenizer, 효과적인 Model initialization, Continuous Multi-Stage Pretraining strategy 등을 갖추고 있습니다. 이러한 접근 방식은 높은 정확도와 이해도를 유지하면서 Computational costs를 줄여 제한된 리소스에서 Pretraining을 가능하게 해줍니다. **RedWhale** 사용을 원하시면 repo access 요청해주세요.
## About the Model
- **Name:** TwinDoc/RedWhale-tv-10.8B-v1.0
- **Foundation Model:** upstage/SOLAR-10.7B-v1.0
- **Train Corpus:** [preprocessed AI-Hub datasets](https://huggingface.co/datasets/TwinDoc/agilesoda-corpus-AIHUB_splited_shffled)
- **Developed by:** 애자일소다 (AGILESODA)
- **Model type:** llama
- **Language(s) (NLP):** 한국어, 영어
- **License:** cc-by-nc-sa-4.0
- **Paper:** [RedWhale: An Adapted Korean LLM Through Efficient Continual Pretraining
](https://arxiv.org/abs/2408.11294)
## Load the Model
```
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
YOUR_HF_TOKEN_READ = "hf_..."
model_name_or_path = "TwinDoc/RedWhale-tv-10.8B-v1.0"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, token=YOUR_HF_TOKEN_READ)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, token=YOUR_HF_TOKEN_READ)
```
## Generate Text
```
text = "대한민국의 수도는"
encodings = tokenizer(text, return_tensors='pt')
terminators = [tokenizer.eos_token_id] + tokenizer("\n", add_special_tokens=False)["input_ids"]
outputs = model.generate(**encodings, eos_token_id=terminators)
generated_text = tokenizer.batch_decode(outputs)[0]
# ' 대한민국의 수도는 서울이다.\n'
```
## License
The content of this project, created by AGILESODA, is licensed under the [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/).
## Citation
```
@misc{vo2024redwhaleadaptedkoreanllm,
title={RedWhale: An Adapted Korean LLM Through Efficient Continual Pretraining},
author={Anh-Dung Vo and Minseong Jung and Wonbeen Lee and Daewoo Choi},
year={2024},
eprint={2408.11294},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2408.11294},
}
```
**Built with:**