TyurinYuriRost commited on
Commit
98b2128
·
verified ·
1 Parent(s): e44ff87

Upload PPO LunarLander trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 249.70 +/- 44.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e1ee0c66f20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e1ee0c66fc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e1ee0c67060>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e1ee0c67100>", "_build": "<function ActorCriticPolicy._build at 0x7e1ee0c671a0>", "forward": "<function ActorCriticPolicy.forward at 0x7e1ee0c67240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e1ee0c672e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e1ee0c67380>", "_predict": "<function ActorCriticPolicy._predict at 0x7e1ee0c67420>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e1ee0c674c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e1ee0c67560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e1ee0c67600>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e1ee0dd2c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738263759683669394, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIBAET1CabQ/macTP//onr1lNoe8i0FhPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9+4oZydWhiMAWyUS72MAXSUR0CdNFKyv9tNdX2UKGgGR0BwQZqM3qA0aAdNCwFoCEdAnTXhHXmNi3V9lChoBkdAblTd9Dx9X2gHTT0BaAhHQJ046W1MM7V1fZQoaAZHQFDaoGIKtxNoB00KAWgIR0CdOmU6gdwOdX2UKGgGR0BuQhQ3xWkraAdNUwFoCEdAnTxcc6vJR3V9lChoBkdAYF6X40uUU2gHTegDaAhHQJ1DFRiw0O51fZQoaAZHQGS7yoXKr7xoB03oA2gIR0CdSeR2r4nGdX2UKGgGR0BtRpJ7LMcIaAdNQAFoCEdAnUvJzo2XLXV9lChoBkdAbn7Ms6JZXGgHTT4BaAhHQJ1OyXmeUY91fZQoaAZHQG/DUeMhouhoB009AWgIR0CdUNTbnHNpdX2UKGgGR0BGFuSntOVPaAdL3mgIR0CdUmxpcophdX2UKGgGR0BvQvUMG5c1aAdNQgFoCEdAnVY4IOYplXV9lChoBkdASGwgzP8htGgHS+BoCEdAnVgIMWoFV3V9lChoBkdAcN5gXuVopWgHTToBaAhHQJ1ap9jPOY91fZQoaAZHQHH6hS1maphoB01HAWgIR0CdXWJJGvwFdX2UKGgGR0BH+2FFlTWHaAdL5GgIR0CdYAFglWwNdX2UKGgGR0BybjziCJ40aAdNEwFoCEdAnWGeeOGTLXV9lChoBkdAckBupS75EmgHTVoBaAhHQJ1jk9A5aNd1fZQoaAZHQBUhj4HoouxoB0vxaAhHQJ1mQoBq9Gt1fZQoaAZHQG+tvpY9xIdoB03LAWgIR0CdaPlZHNHIdX2UKGgGR0BwFXwMH8jzaAdNIwFoCEdAnWqwYcebNXV9lChoBkdAcq8iD/VAiWgHTXUBaAhHQJ1uMkmhM8J1fZQoaAZHQExPPVNHpbFoB0vlaAhHQJ1vgnpjc211fZQoaAZHQG7w+X7cfvFoB00VAWgIR0CdcRk3juKGdX2UKGgGR0BGCsmnfl6raAdL3GgIR0CdcmK6WgOCdX2UKGgGR0A0BY5T6zmfaAdL5GgIR0CddQgv114gdX2UKGgGR0BNCnNPgvUSaAdNBQFoCEdAnXapYT0xunV9lChoBkdAY4OB8x9G7WgHTegDaAhHQJ1+CpuMuOF1fZQoaAZHQEAubwz+FURoB00BAWgIR0Cdf4RYRujzdX2UKGgGR0BxT+O938oAaAdNIAFoCEdAnYExDXvphXV9lChoBkdAb9XYlpoK2WgHTUcBaAhHQJ2Eg9SuQp51fZQoaAZHQHE0rR8c+7loB00wAWgIR0CdhrSqlxffdX2UKGgGR0BBTM3hn8KpaAdL6WgIR0CdiHZElVtGdX2UKGgGR0Bt7e4iHIp6aAdNQAFoCEdAnYyS0BwMpnV9lChoBkdAcZe6PsAvMGgHTUoBaAhHQJ2PhsKsuFp1fZQoaAZHQHAHO0CzTndoB00ZAWgIR0CdkcwMYuTSdX2UKGgGR0BJ8FrM1TBJaAdL62gIR0Cdk1EVnEl3dX2UKGgGR0BxdKhK15SnaAdNMAFoCEdAnZZ7N0NjLHV9lChoBkdAbZvGoaUA1mgHTS8BaAhHQJ2YYwIt16p1fZQoaAZHQEh2DEFW4mVoB0vfaAhHQJ2ZutCAtnR1fZQoaAZHQHE/cJdB0IVoB00yAWgIR0Cdm59Vmz0IdX2UKGgGR0BwCZbhWHUMaAdN/QFoCEdAnaAUwztTk3V9lChoBkdAcEf6ZYxL02gHTXgBaAhHQJ2iVLg4wRJ1fZQoaAZHQGLj58jRlYloB03oA2gIR0CdqbB5HEuQdX2UKGgGR0Bwrz6k690zaAdNSQFoCEdAnazs01qFiHV9lChoBkdAPbFj3Ehq02gHS9RoCEdAna4yrPt2LnV9lChoBkdAX9Fh1DBuXWgHTegDaAhHQJ21b/6wdKd1fZQoaAZHQGG+43m3fANoB03oA2gIR0CdvdU+9rXUdX2UKGgGR0By5fIwM6RyaAdNOwFoCEdAncA9SAH3UXV9lChoBkdAcBCGC7K7qmgHTQoBaAhHQJ3Ccuwosqd1fZQoaAZHQG8kJrcj7hxoB00wAWgIR0CdxkbiZOSGdX2UKGgGR0Bx2ZtcfNiZaAdN1wFoCEdAnckg7DEWI3V9lChoBkdAcVvhn8Koh2gHTREBaAhHQJ3KvJ+2E011fZQoaAZHQHLpjLOiWVxoB02JAWgIR0Cdzjzu4PPLdX2UKGgGR0BxeusA/9pAaAdNNgFoCEdAnc/8lXzUZ3V9lChoBkdASciFoL5RCWgHS/toCEdAndFnm7rcCnV9lChoBkdAbQAVSn+AE2gHTSQBaAhHQJ3UVRpDeCV1fZQoaAZHQG/G8NpdrwhoB00dAWgIR0Cd1gEnLJS0dX2UKGgGR0BxQ9gMMI/raAdNLAFoCEdAndfHuZ1FIHV9lChoBkdAci/HxSYPXmgHTScBaAhHQJ3Zf4fwI+p1fZQoaAZHQG/dMA/9pAVoB00lAWgIR0Cd3HbBXS0CdX2UKGgGR0Av5PznRsuWaAdLzmgIR0Cd3arkKeCkdX2UKGgGR0Bwv0n0Cih4aAdNegFoCEdAnd/XO8kD6nV9lChoBkdAcHN19v0h/2gHTUEBaAhHQJ3i4na37UJ1fZQoaAZHQHHFpHI6r/9oB01LAWgIR0Cd5Lcqe9SNdX2UKGgGR0Bw3qMhouf3aAdNLAFoCEdAneZmjfvWpnV9lChoBkdAbDxpD/lyR2gHTRYBaAhHQJ3n7ryDqW11fZQoaAZHQG/Z1h9b5dpoB01wAWgIR0Cd60E4ecQRdX2UKGgGR0Bs36+cpb2UaAdNRQFoCEdAne2V7IDHO3V9lChoBkdAbRX6Mzdk8WgHTUgBaAhHQJ3wBocrAgx1fZQoaAZHQEnF7VrhzeZoB0viaAhHQJ3zaJ3xFy91fZQoaAZHQHCvvRArxy5oB00uAWgIR0Cd9dytmthedX2UKGgGR0BwzlHWjGkvaAdNDQFoCEdAnfgNEgGKRHV9lChoBkdAcEi35eqrBGgHTTEBaAhHQJ37sRe1KGt1fZQoaAZHQG4bhEroW59oB01FAWgIR0Cd/ZGaQV9GdX2UKGgGR0BwAgCRwIdEaAdN5gFoCEdAngB0QTVUdnV9lChoBkdAb1Q12q1gIGgHTSgBaAhHQJ4DgiJO32F1fZQoaAZHQHEXbf1pTMtoB01zAWgIR0CeBahq0tyxdX2UKGgGR0BtbC8nNPgvaAdNLwFoCEdAngd2OuJUHnV9lChoBkdAcb+WAf+0gWgHTT8BaAhHQJ4KpGwzLwF1fZQoaAZHQG6eLRa5f+loB00bAWgIR0CeDEUADJU6dX2UKGgGR0Bxwepm29csaAdNLgFoCEdAng39RrJr+HV9lChoBkdAcuxIzFdcB2gHTR8BaAhHQJ4PqDujRD11fZQoaAZHQHGDSW7e2uxoB01ZAWgIR0CeEt/RVp9JdX2UKGgGR0BwnxbX6InCaAdNDAFoCEdAnhRgow22onV9lChoBkdAcb2JCBwuNGgHTSsBaAhHQJ4WCthd+od1fZQoaAZHQHGzONDMNc5oB02fAWgIR0CeGa8PFvQ4dX2UKGgGR0BvYns5XEIgaAdNGgFoCEdAnhtIP9UCJXV9lChoBkdAT4ffIjnmrGgHTQUBaAhHQJ4cwJWvKU51fZQoaAZHQHAiPwNLDhtoB00tAWgIR0CeH9UnG828dX2UKGgGR0BwWXFERaouaAdNIAFoCEdAniFo150KZ3V9lChoBkdAcWzIYm9g4WgHTS8BaAhHQJ4jm3iJfpl1fZQoaAZHQHKnOHvc8DBoB02fAWgIR0CeKFx/ustDdX2UKGgGR0BwZb3Gn4wiaAdNCAFoCEdAniqD6vaDf3V9lChoBkdAUIHslb/wRWgHS9RoCEdAnixOTq0MPXV9lChoBkdAcWQD9Oymh2gHTUkBaAhHQJ4u62d/axp1fZQoaAZHQG2cRhc7hehoB00gAWgIR0CeMjN8VpK0dX2UKGgGR0BwoeKJl8PXaAdNLgFoCEdAnjPqLwWnCXV9lChoBkdAcG81m8M/hWgHTVQBaAhHQJ4149gWrOt1fZQoaAZHQEptqnFYMfBoB0vwaAhHQJ43QbJfYz11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e40d1176a68c260fd20f44e0a847f9b6020135b468a934b8954583e94fc37f93
3
+ size 147454
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e1ee0c66f20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e1ee0c66fc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e1ee0c67060>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e1ee0c67100>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e1ee0c671a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e1ee0c67240>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e1ee0c672e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e1ee0c67380>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e1ee0c67420>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e1ee0c674c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e1ee0c67560>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e1ee0c67600>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e1ee0dd2c40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1738263759683669394,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIBAET1CabQ/macTP//onr1lNoe8i0FhPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9+4oZydWhiMAWyUS72MAXSUR0CdNFKyv9tNdX2UKGgGR0BwQZqM3qA0aAdNCwFoCEdAnTXhHXmNi3V9lChoBkdAblTd9Dx9X2gHTT0BaAhHQJ046W1MM7V1fZQoaAZHQFDaoGIKtxNoB00KAWgIR0CdOmU6gdwOdX2UKGgGR0BuQhQ3xWkraAdNUwFoCEdAnTxcc6vJR3V9lChoBkdAYF6X40uUU2gHTegDaAhHQJ1DFRiw0O51fZQoaAZHQGS7yoXKr7xoB03oA2gIR0CdSeR2r4nGdX2UKGgGR0BtRpJ7LMcIaAdNQAFoCEdAnUvJzo2XLXV9lChoBkdAbn7Ms6JZXGgHTT4BaAhHQJ1OyXmeUY91fZQoaAZHQG/DUeMhouhoB009AWgIR0CdUNTbnHNpdX2UKGgGR0BGFuSntOVPaAdL3mgIR0CdUmxpcophdX2UKGgGR0BvQvUMG5c1aAdNQgFoCEdAnVY4IOYplXV9lChoBkdASGwgzP8htGgHS+BoCEdAnVgIMWoFV3V9lChoBkdAcN5gXuVopWgHTToBaAhHQJ1ap9jPOY91fZQoaAZHQHH6hS1maphoB01HAWgIR0CdXWJJGvwFdX2UKGgGR0BH+2FFlTWHaAdL5GgIR0CdYAFglWwNdX2UKGgGR0BybjziCJ40aAdNEwFoCEdAnWGeeOGTLXV9lChoBkdAckBupS75EmgHTVoBaAhHQJ1jk9A5aNd1fZQoaAZHQBUhj4HoouxoB0vxaAhHQJ1mQoBq9Gt1fZQoaAZHQG+tvpY9xIdoB03LAWgIR0CdaPlZHNHIdX2UKGgGR0BwFXwMH8jzaAdNIwFoCEdAnWqwYcebNXV9lChoBkdAcq8iD/VAiWgHTXUBaAhHQJ1uMkmhM8J1fZQoaAZHQExPPVNHpbFoB0vlaAhHQJ1vgnpjc211fZQoaAZHQG7w+X7cfvFoB00VAWgIR0CdcRk3juKGdX2UKGgGR0BGCsmnfl6raAdL3GgIR0CdcmK6WgOCdX2UKGgGR0A0BY5T6zmfaAdL5GgIR0CddQgv114gdX2UKGgGR0BNCnNPgvUSaAdNBQFoCEdAnXapYT0xunV9lChoBkdAY4OB8x9G7WgHTegDaAhHQJ1+CpuMuOF1fZQoaAZHQEAubwz+FURoB00BAWgIR0Cdf4RYRujzdX2UKGgGR0BxT+O938oAaAdNIAFoCEdAnYExDXvphXV9lChoBkdAb9XYlpoK2WgHTUcBaAhHQJ2Eg9SuQp51fZQoaAZHQHE0rR8c+7loB00wAWgIR0CdhrSqlxffdX2UKGgGR0BBTM3hn8KpaAdL6WgIR0CdiHZElVtGdX2UKGgGR0Bt7e4iHIp6aAdNQAFoCEdAnYyS0BwMpnV9lChoBkdAcZe6PsAvMGgHTUoBaAhHQJ2PhsKsuFp1fZQoaAZHQHAHO0CzTndoB00ZAWgIR0CdkcwMYuTSdX2UKGgGR0BJ8FrM1TBJaAdL62gIR0Cdk1EVnEl3dX2UKGgGR0BxdKhK15SnaAdNMAFoCEdAnZZ7N0NjLHV9lChoBkdAbZvGoaUA1mgHTS8BaAhHQJ2YYwIt16p1fZQoaAZHQEh2DEFW4mVoB0vfaAhHQJ2ZutCAtnR1fZQoaAZHQHE/cJdB0IVoB00yAWgIR0Cdm59Vmz0IdX2UKGgGR0BwCZbhWHUMaAdN/QFoCEdAnaAUwztTk3V9lChoBkdAcEf6ZYxL02gHTXgBaAhHQJ2iVLg4wRJ1fZQoaAZHQGLj58jRlYloB03oA2gIR0CdqbB5HEuQdX2UKGgGR0Bwrz6k690zaAdNSQFoCEdAnazs01qFiHV9lChoBkdAPbFj3Ehq02gHS9RoCEdAna4yrPt2LnV9lChoBkdAX9Fh1DBuXWgHTegDaAhHQJ21b/6wdKd1fZQoaAZHQGG+43m3fANoB03oA2gIR0CdvdU+9rXUdX2UKGgGR0By5fIwM6RyaAdNOwFoCEdAncA9SAH3UXV9lChoBkdAcBCGC7K7qmgHTQoBaAhHQJ3Ccuwosqd1fZQoaAZHQG8kJrcj7hxoB00wAWgIR0CdxkbiZOSGdX2UKGgGR0Bx2ZtcfNiZaAdN1wFoCEdAnckg7DEWI3V9lChoBkdAcVvhn8Koh2gHTREBaAhHQJ3KvJ+2E011fZQoaAZHQHLpjLOiWVxoB02JAWgIR0Cdzjzu4PPLdX2UKGgGR0BxeusA/9pAaAdNNgFoCEdAnc/8lXzUZ3V9lChoBkdASciFoL5RCWgHS/toCEdAndFnm7rcCnV9lChoBkdAbQAVSn+AE2gHTSQBaAhHQJ3UVRpDeCV1fZQoaAZHQG/G8NpdrwhoB00dAWgIR0Cd1gEnLJS0dX2UKGgGR0BxQ9gMMI/raAdNLAFoCEdAndfHuZ1FIHV9lChoBkdAci/HxSYPXmgHTScBaAhHQJ3Zf4fwI+p1fZQoaAZHQG/dMA/9pAVoB00lAWgIR0Cd3HbBXS0CdX2UKGgGR0Av5PznRsuWaAdLzmgIR0Cd3arkKeCkdX2UKGgGR0Bwv0n0Cih4aAdNegFoCEdAnd/XO8kD6nV9lChoBkdAcHN19v0h/2gHTUEBaAhHQJ3i4na37UJ1fZQoaAZHQHHFpHI6r/9oB01LAWgIR0Cd5Lcqe9SNdX2UKGgGR0Bw3qMhouf3aAdNLAFoCEdAneZmjfvWpnV9lChoBkdAbDxpD/lyR2gHTRYBaAhHQJ3n7ryDqW11fZQoaAZHQG/Z1h9b5dpoB01wAWgIR0Cd60E4ecQRdX2UKGgGR0Bs36+cpb2UaAdNRQFoCEdAne2V7IDHO3V9lChoBkdAbRX6Mzdk8WgHTUgBaAhHQJ3wBocrAgx1fZQoaAZHQEnF7VrhzeZoB0viaAhHQJ3zaJ3xFy91fZQoaAZHQHCvvRArxy5oB00uAWgIR0Cd9dytmthedX2UKGgGR0BwzlHWjGkvaAdNDQFoCEdAnfgNEgGKRHV9lChoBkdAcEi35eqrBGgHTTEBaAhHQJ37sRe1KGt1fZQoaAZHQG4bhEroW59oB01FAWgIR0Cd/ZGaQV9GdX2UKGgGR0BwAgCRwIdEaAdN5gFoCEdAngB0QTVUdnV9lChoBkdAb1Q12q1gIGgHTSgBaAhHQJ4DgiJO32F1fZQoaAZHQHEXbf1pTMtoB01zAWgIR0CeBahq0tyxdX2UKGgGR0BtbC8nNPgvaAdNLwFoCEdAngd2OuJUHnV9lChoBkdAcb+WAf+0gWgHTT8BaAhHQJ4KpGwzLwF1fZQoaAZHQG6eLRa5f+loB00bAWgIR0CeDEUADJU6dX2UKGgGR0Bxwepm29csaAdNLgFoCEdAng39RrJr+HV9lChoBkdAcuxIzFdcB2gHTR8BaAhHQJ4PqDujRD11fZQoaAZHQHGDSW7e2uxoB01ZAWgIR0CeEt/RVp9JdX2UKGgGR0BwnxbX6InCaAdNDAFoCEdAnhRgow22onV9lChoBkdAcb2JCBwuNGgHTSsBaAhHQJ4WCthd+od1fZQoaAZHQHGzONDMNc5oB02fAWgIR0CeGa8PFvQ4dX2UKGgGR0BvYns5XEIgaAdNGgFoCEdAnhtIP9UCJXV9lChoBkdAT4ffIjnmrGgHTQUBaAhHQJ4cwJWvKU51fZQoaAZHQHAiPwNLDhtoB00tAWgIR0CeH9UnG828dX2UKGgGR0BwWXFERaouaAdNIAFoCEdAniFo150KZ3V9lChoBkdAcWzIYm9g4WgHTS8BaAhHQJ4jm3iJfpl1fZQoaAZHQHKnOHvc8DBoB02fAWgIR0CeKFx/ustDdX2UKGgGR0BwZb3Gn4wiaAdNCAFoCEdAniqD6vaDf3V9lChoBkdAUIHslb/wRWgHS9RoCEdAnixOTq0MPXV9lChoBkdAcWQD9Oymh2gHTUkBaAhHQJ4u62d/axp1fZQoaAZHQG2cRhc7hehoB00gAWgIR0CeMjN8VpK0dX2UKGgGR0BwoeKJl8PXaAdNLgFoCEdAnjPqLwWnCXV9lChoBkdAcG81m8M/hWgHTVQBaAhHQJ4149gWrOt1fZQoaAZHQEptqnFYMfBoB0vwaAhHQJ43QbJfYz11ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7ed97763ede0cd71f1a2f29bff8cf898069b82cabc8a153bf9725e4a25f760e
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4efe6e3c1b1c9b4db494b7be448b2c28fae967810bca579b6d166c613864252
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.11.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu124
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (163 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 249.69738610000005, "std_reward": 44.12203508115511, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-30T20:09:48.919251"}