UMCU commited on
Commit
5c5a288
·
verified ·
1 Parent(s): d3e0b8e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md CHANGED
@@ -1,3 +1,84 @@
1
  ---
2
  license: gpl-3.0
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: gpl-3.0
3
+ language:
4
+ - nl
5
+ pipeline_tag: token-classification
6
+ tags:
7
+ - medical
8
  ---
9
+
10
+
11
+ # MedRoBERTa.nl finetuned for experiencer
12
+
13
+ ## Description
14
+ This model is a finetuned RoBERTa-based model pre-trained from scratch
15
+ on Dutch hospital notes sourced from Electronic Health Records.
16
+ All code used for the creation of MedRoBERTa.nl
17
+ can be found at https://github.com/cltl-students/verkijk_stella_rma_thesis_dutch_medical_language_model.
18
+ The publication associated with the negation detection task can be found at https://arxiv.org/abs/2209.00470.
19
+ The code for finetuning the model can be found at https://github.com/umcu/negation-detection.
20
+
21
+
22
+ ## Minimal example
23
+
24
+ ```python
25
+ tokenizer = AutoTokenizer\
26
+ .from_pretrained("UMCU/MedRoBERTa.nl_Experiencer")
27
+ model = AutoModelForTokenClassification\
28
+ .from_pretrained("UMCU/MedRoBERTa.nl_Experiencer")
29
+
30
+ some_text = "De patient was niet aanspreekbaar en hij zag er grauw uit. \
31
+ Hij heeft de inspanningstest echter goed doorstaan. \
32
+ De broer heeft onlangs een operatie ondergaan."
33
+
34
+ inputs = tokenizer(some_text, return_tensors='pt')
35
+ output = model.forward(inputs)
36
+ probas = torch.nn.functional.softmax(output.logits[0]).detach().numpy()
37
+
38
+ # associate with tokens
39
+ input_tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
40
+ target_map = {0: 'B-Patient', 1:'B-Other',2:'I-Patient',3:'I-Other'}
41
+ results = [{'token': input_tokens[idx],
42
+ 'proba_patient': proba_arr[0]+proba_arr[2],
43
+ 'proba_other': proba_arr[1]+proba_arr[3]
44
+ }
45
+ for idx,proba_arr in enumerate(probas)]
46
+
47
+ ```
48
+
49
+ The medical entity classifiers are (being) integrated in the opensource library [clinlp](https://github.com/umcu/clinlp), feel free to contact
50
+ us for access, either through Huggingface or through git.
51
+
52
+ It is perhaps good to note that we assume the [Inside-Outside-Beginning](https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)) format.
53
+
54
+ ## Intended use
55
+ The model is finetuned for experiencer detection on Dutch clinical text.
56
+ Since it is a domain-specific model trained on medical data,
57
+ it is meant to be used on medical NLP tasks for Dutch.
58
+ This particular model is trained on a 64-max token windows surrounding the concept-to-be negated.
59
+
60
+ ## Data
61
+ The pre-trained model was trained on nearly 10 million hospital notes from the Amsterdam University Medical Centres.
62
+ The training data was anonymized before starting the pre-training procedure.
63
+
64
+ The finetuning was performed on the Erasmus Dutch Clinical Corpus (EDCC), which was synthetically upsampled for the minority classses.
65
+ The EDCC can be obtained through Jan Kors ([email protected]).
66
+ The EDCC is described here: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-014-0373-3
67
+
68
+ ## Authors
69
+
70
+ MedRoBERTa.nl: Stella Verkijk, Piek Vossen,
71
+ Finetuning: Bram van Es
72
+
73
+ ## Contact
74
+
75
+ If you are having problems with this model please add an issue on our git: https://github.com/umcu/negation-detection/issues
76
+
77
+ ## Usage
78
+
79
+ If you use the model in your work please use the following referral; and (paper) https://doi.org/10.1186/s12859-022-05130-x
80
+
81
+ ## References
82
+ Paper: Verkijk, S. & Vossen, P. (2022) MedRoBERTa.nl: A Language Model for Dutch Electronic Health Records. Computational Linguistics in the Netherlands Journal, 11.
83
+
84
+ Paper: Bram van Es, Leon C. Reteig, Sander C. Tan, Marijn Schraagen, Myrthe M. Hemker, Sebastiaan R.S. Arends, Miguel A.R. Rios, Saskia Haitjema (2022): Negation detection in Dutch clinical texts: an evaluation of rule-based and machine learning methods, Arxiv