UMCU commited on
Commit
d6452a0
·
verified ·
1 Parent(s): 5152b6b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ id: mirrorbert_MedRoBERTa.nl_meantoken
3
+ name: mirrorbert_MedRoBERTa.nl_meantoken
4
+ description: MedRoBERTa.nl continued pre-training on hard medical terms pairs from
5
+ the UMLS/SNOMED ontology, using the infoNCE loss function, as implemented in MirrorBERT
6
+ license: gpl-3.0
7
+ language: nl
8
+ tags:
9
+ - biology
10
+ - embedding
11
+ - entity linking
12
+ - biomedical
13
+ - science
14
+ - bionlp
15
+ - lexical semantic
16
+ pipeline_tag: feature-extraction
17
+ ---
18
+
19
+ # Model Card for Mirrorbert Medroberta.Nl Meantoken
20
+
21
+ The model was trained on medical entity triplets (anchor, term, synonym)
22
+
23
+
24
+ ### Expected input and output
25
+ The input should be a string of biomedical entity names, e.g., "covid infection" or "Hydroxychloroquine". The [CLS] embedding of the last layer is regarded as the output.
26
+
27
+ #### Extracting embeddings from mirrorbert_MedRoBERTa.nl_meantoken
28
+
29
+ The following script converts a list of strings (entity names) into embeddings.
30
+ ```python
31
+ import numpy as np
32
+ import torch
33
+ from tqdm.auto import tqdm
34
+ from transformers import AutoTokenizer, AutoModel
35
+
36
+ tokenizer = AutoTokenizer.from_pretrained("UMCU/mirrorbert_MedRoBERTa.nl_meantoken")
37
+ model = AutoModel.from_pretrained("UMCU/mirrorbert_MedRoBERTa.nl_meantoken").cuda()
38
+
39
+ # replace with your own list of entity names
40
+ all_names = ["covid-19", "Coronavirus infection", "high fever", "Tumor of posterior wall of oropharynx"]
41
+
42
+ bs = 128 # batch size during inference
43
+ all_embs = []
44
+ for i in tqdm(np.arange(0, len(all_names), bs)):
45
+ toks = tokenizer.batch_encode_plus(all_names[i:i+bs],
46
+ padding="max_length",
47
+ max_length=25,
48
+ truncation=True,
49
+ return_tensors="pt")
50
+ toks_cuda = {}
51
+ for k,v in toks.items():
52
+ toks_cuda[k] = v.cuda()
53
+ cls_rep = model(**toks_cuda)[0].mean(1)
54
+ all_embs.append(cls_rep.cpu().detach().numpy())
55
+
56
+ all_embs = np.concatenate(all_embs, axis=0)
57
+ ```
58
+
59
+
60
+ # Data description
61
+
62
+ Hard Dutch UMLS/SNOMED synonym pairs (terms referring to the same CUI/SCUI),and including English medication names
63
+
64
+
65
+ # Acknowledgement
66
+
67
+ This is part of the [DT4H project](https://www.datatools4heart.eu/).
68
+
69
+ # Doi and reference
70
+
71
+
72
+
73
+ For more details about training and eval, see MirrorBERT [github repo](https://github.com/cambridgeltl/mirror-bert).
74
+
75
+
76
+ ### Citation
77
+ ```bibtex
78
+ @inproceedings{liu-etal-2021-fast,
79
+ title = "Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders",
80
+ author = "Liu, Fangyu and
81
+ Vuli{'c}, Ivan and
82
+ Korhonen, Anna and
83
+ Collier, Nigel",
84
+ booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
85
+ month = nov,
86
+ year = "2021",
87
+ address = "Online and Punta Cana, Dominican Republic",
88
+ publisher = "Association for Computational Linguistics",
89
+ url = "https://aclanthology.org/2021.emnlp-main.109",
90
+ pages = "1442--1459",
91
+ }
92
+ ```
93
+ For more details about training/eval and other scripts, see CardioNER [github repo](https://github.com/DataTools4Heart/CardioNER).
94
+ and for more information on the background, see Datatools4Heart [Huggingface](https://huggingface.co/DT4H)/[Website](https://www.datatools4heart.eu/)
95
+
96
+
97
+