UNCANNY69 commited on
Commit
615d184
·
verified ·
1 Parent(s): 2e86504

Create model.py

Browse files
Files changed (1) hide show
  1. model.py +81 -0
model.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABCMeta
2
+ import torch
3
+ from transformers.pytorch_utils import nn
4
+ import torch.nn.functional as F
5
+ from transformers import RobertaModel, RobertaForSequenceClassification, PreTrainedModel
6
+ from transformers.modeling_outputs import SequenceClassifierOutput
7
+ from transformers import RobertaConfig
8
+ from transformers import PretrainedConfig
9
+
10
+ class RobertaABSAConfig(PretrainedConfig):
11
+ model_type = "robertaCNNForSequenceClassification"
12
+
13
+ def __init__(self,
14
+ num_classes=2,
15
+ embed_dim=768,
16
+ conv_out_channels=256, # New parameter for Conv1d
17
+ conv_kernel_size=3,
18
+ fc_hidden=128, # New parameter for FC layer
19
+ dropout_rate=0.1,
20
+ num_layers=12,
21
+ **kwargs):
22
+ super().__init__(**kwargs)
23
+ self.num_classes = num_classes
24
+ self.embed_dim = embed_dim
25
+ self.conv_out_channels = conv_out_channels # Assign Conv1d output channels
26
+ self.conv_kernel_size = conv_kernel_size # Assign Conv1d kernel size
27
+ self.fc_hidden = fc_hidden # Assign FC layer hidden units
28
+ self.dropout_rate = dropout_rate
29
+ self.num_layers = num_layers
30
+ self.id2label = {
31
+ 0: "fake",
32
+ 1: "true",
33
+ }
34
+ self.label2id = {
35
+ "fake": 0,
36
+ "true": 1,
37
+ }
38
+
39
+
40
+ class RobertaCNNForSequenceClassification(PreTrainedModel, metaclass=ABCMeta):
41
+ config_class = RobertaABSAConfig
42
+
43
+ def __init__(self, config):
44
+ super(RobertaCNNForSequenceClassification, self).__init__(config)
45
+ self.num_classes = config.num_classes
46
+ self.embed_dim = config.embed_dim
47
+ self.num_layers = config.num_layers
48
+ self.conv_out_channels = config.conv_out_channels
49
+ self.conv_kernel_size = config.conv_kernel_size
50
+ self.dropout = nn.Dropout(config.dropout_rate)
51
+ self.roberta = RobertaModel.from_pretrained('roberta-base',
52
+ output_hidden_states=True,
53
+ output_attentions=False)
54
+ print("RoBERTa Model Loaded")
55
+ self.conv1d = nn.Conv1d(in_channels=self.embed_dim, out_channels=self.conv_out_channels, kernel_size=self.conv_kernel_size)
56
+ self.fc = nn.Linear(self.conv_out_channels, self.num_classes)
57
+
58
+ def forward(self, input_ids, attention_mask, labels=None):
59
+ roberta_output = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
60
+ hidden_states = roberta_output["hidden_states"]
61
+
62
+ hidden_states = torch.stack([hidden_states[layer_i][:, 0].squeeze()
63
+ for layer_i in range(0, self.num_layers)], dim=-1) # noqa
64
+ hidden_states = hidden_states.view(-1, self.num_layers, self.embed_dim)
65
+ hidden_states = hidden_states.permute(0, 2, 1) # Permute to match Conv1d input shape
66
+ conv_output = self.conv1d(hidden_states)
67
+ conv_output = F.relu(conv_output)
68
+ conv_output = F.max_pool1d(conv_output, kernel_size=conv_output.size(2)) # Global Max Pooling
69
+ conv_output = conv_output.squeeze(-1)
70
+ conv_output = self.dropout(conv_output)
71
+ logits = self.fc(conv_output)
72
+ loss = None
73
+ if labels is not None:
74
+ loss = F.cross_entropy(logits, labels)
75
+ out = SequenceClassifierOutput(
76
+ loss=loss,
77
+ logits=logits,
78
+ hidden_states=roberta_output.hidden_states,
79
+ attentions=roberta_output.attentions,
80
+ )
81
+ return out