Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABCMeta
|
2 |
+
import torch
|
3 |
+
from transformers.pytorch_utils import nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from transformers import RobertaModel, RobertaForSequenceClassification, PreTrainedModel
|
6 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
7 |
+
from transformers import RobertaConfig
|
8 |
+
from transformers import PretrainedConfig
|
9 |
+
|
10 |
+
class RobertaABSAConfig(PretrainedConfig):
|
11 |
+
model_type = "robertaCNNForSequenceClassification"
|
12 |
+
|
13 |
+
def __init__(self,
|
14 |
+
num_classes=2,
|
15 |
+
embed_dim=768,
|
16 |
+
conv_out_channels=256, # New parameter for Conv1d
|
17 |
+
conv_kernel_size=3,
|
18 |
+
fc_hidden=128, # New parameter for FC layer
|
19 |
+
dropout_rate=0.1,
|
20 |
+
num_layers=12,
|
21 |
+
**kwargs):
|
22 |
+
super().__init__(**kwargs)
|
23 |
+
self.num_classes = num_classes
|
24 |
+
self.embed_dim = embed_dim
|
25 |
+
self.conv_out_channels = conv_out_channels # Assign Conv1d output channels
|
26 |
+
self.conv_kernel_size = conv_kernel_size # Assign Conv1d kernel size
|
27 |
+
self.fc_hidden = fc_hidden # Assign FC layer hidden units
|
28 |
+
self.dropout_rate = dropout_rate
|
29 |
+
self.num_layers = num_layers
|
30 |
+
self.id2label = {
|
31 |
+
0: "fake",
|
32 |
+
1: "true",
|
33 |
+
}
|
34 |
+
self.label2id = {
|
35 |
+
"fake": 0,
|
36 |
+
"true": 1,
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
class RobertaCNNForSequenceClassification(PreTrainedModel, metaclass=ABCMeta):
|
41 |
+
config_class = RobertaABSAConfig
|
42 |
+
|
43 |
+
def __init__(self, config):
|
44 |
+
super(RobertaCNNForSequenceClassification, self).__init__(config)
|
45 |
+
self.num_classes = config.num_classes
|
46 |
+
self.embed_dim = config.embed_dim
|
47 |
+
self.num_layers = config.num_layers
|
48 |
+
self.conv_out_channels = config.conv_out_channels
|
49 |
+
self.conv_kernel_size = config.conv_kernel_size
|
50 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
51 |
+
self.roberta = RobertaModel.from_pretrained('roberta-base',
|
52 |
+
output_hidden_states=True,
|
53 |
+
output_attentions=False)
|
54 |
+
print("RoBERTa Model Loaded")
|
55 |
+
self.conv1d = nn.Conv1d(in_channels=self.embed_dim, out_channels=self.conv_out_channels, kernel_size=self.conv_kernel_size)
|
56 |
+
self.fc = nn.Linear(self.conv_out_channels, self.num_classes)
|
57 |
+
|
58 |
+
def forward(self, input_ids, attention_mask, labels=None):
|
59 |
+
roberta_output = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
|
60 |
+
hidden_states = roberta_output["hidden_states"]
|
61 |
+
|
62 |
+
hidden_states = torch.stack([hidden_states[layer_i][:, 0].squeeze()
|
63 |
+
for layer_i in range(0, self.num_layers)], dim=-1) # noqa
|
64 |
+
hidden_states = hidden_states.view(-1, self.num_layers, self.embed_dim)
|
65 |
+
hidden_states = hidden_states.permute(0, 2, 1) # Permute to match Conv1d input shape
|
66 |
+
conv_output = self.conv1d(hidden_states)
|
67 |
+
conv_output = F.relu(conv_output)
|
68 |
+
conv_output = F.max_pool1d(conv_output, kernel_size=conv_output.size(2)) # Global Max Pooling
|
69 |
+
conv_output = conv_output.squeeze(-1)
|
70 |
+
conv_output = self.dropout(conv_output)
|
71 |
+
logits = self.fc(conv_output)
|
72 |
+
loss = None
|
73 |
+
if labels is not None:
|
74 |
+
loss = F.cross_entropy(logits, labels)
|
75 |
+
out = SequenceClassifierOutput(
|
76 |
+
loss=loss,
|
77 |
+
logits=logits,
|
78 |
+
hidden_states=roberta_output.hidden_states,
|
79 |
+
attentions=roberta_output.attentions,
|
80 |
+
)
|
81 |
+
return out
|