|
from transformers import BertModel, BertConfig |
|
from abc import ABCMeta |
|
from transformers.modeling_outputs import BaseModelOutputWithPooling |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers.modeling_outputs import SequenceClassifierOutput |
|
from transformers import PreTrainedModel |
|
from transformers import PretrainedConfig |
|
|
|
class BertLSTMConfig(PretrainedConfig): |
|
model_type = "bertLSTMForSequenceClassification" |
|
|
|
def __init__(self, |
|
num_classes=2, |
|
hidden_size=768, |
|
num_layers=12, |
|
hidden_dim_lstm=256, |
|
hidden_dropout_prob=0.1, |
|
**kwargs): |
|
super().__init__(**kwargs) |
|
self.num_classes = num_classes |
|
self.hidden_size = hidden_size |
|
self.num_layers = num_layers |
|
self.hidden_dim_lstm = hidden_dim_lstm |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.id2label = { |
|
0: "fake", |
|
1: "true", |
|
} |
|
self.label2id = { |
|
"fake": 0, |
|
"true": 1, |
|
} |
|
|
|
|
|
class BertLSTMForSequenceClassification(PreTrainedModel, metaclass=ABCMeta): |
|
config_class = BertLSTMConfig |
|
|
|
def __init__(self, config): |
|
super(BertLSTMForSequenceClassification, self).__init__(config) |
|
self.num_classes = config.num_classes |
|
self.embed_dim = config.hidden_size |
|
self.num_layers = config.num_layers |
|
self.hidden_dim_lstm = config.hidden_dim_lstm |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
|
|
self.bert = BertModel.from_pretrained('bert-base-uncased', output_hidden_states=True, output_attentions=False) |
|
print("BERT Model Loaded") |
|
|
|
|
|
self.lstm = nn.LSTM(self.embed_dim, self.hidden_dim_lstm, batch_first=True, num_layers=self.num_layers) |
|
|
|
|
|
self.fc = nn.Linear(self.hidden_dim_lstm, self.num_classes) |
|
|
|
def forward(self, input_ids, attention_mask, token_type_ids, labels=None): |
|
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) |
|
hidden_states = bert_output["hidden_states"] |
|
|
|
|
|
last_hidden_states = hidden_states[-1] |
|
|
|
|
|
last_hidden_states = self.dropout(last_hidden_states) |
|
|
|
|
|
lstm_output, _ = self.lstm(last_hidden_states, None) |
|
|
|
|
|
lstm_output = lstm_output[:, -1, :] |
|
|
|
|
|
lstm_output = self.dropout(lstm_output) |
|
|
|
|
|
logits = self.fc(lstm_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = F.cross_entropy(logits, labels) |
|
|
|
out = SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=bert_output.hidden_states, |
|
attentions=bert_output.attentions, |
|
) |
|
return out |
|
|