Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertModel, BertConfig
|
2 |
+
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from transformers import PreTrainedModel, SequenceClassifierOutput
|
6 |
+
from transformers import PretrainedConfig
|
7 |
+
|
8 |
+
class BertLSTMConfig(PretrainedConfig):
|
9 |
+
model_type = "bertLSTMForSequenceClassification"
|
10 |
+
|
11 |
+
def __init__(self,
|
12 |
+
num_classes=2,
|
13 |
+
hidden_size=768, # BERT hidden size
|
14 |
+
num_layers=12,
|
15 |
+
hidden_dim_lstm=256, # New parameter for LSTM
|
16 |
+
hidden_dropout_prob=0.1, # Changed from dropout_rate to hidden_dropout_prob
|
17 |
+
**kwargs):
|
18 |
+
super().__init__(**kwargs)
|
19 |
+
self.num_classes = num_classes
|
20 |
+
self.hidden_size = hidden_size
|
21 |
+
self.num_layers = num_layers
|
22 |
+
self.hidden_dim_lstm = hidden_dim_lstm # Assign LSTM hidden dimension
|
23 |
+
self.hidden_dropout_prob = hidden_dropout_prob # Adjusted to BERT parameter name
|
24 |
+
self.id2label = {
|
25 |
+
0: "fake",
|
26 |
+
1: "true",
|
27 |
+
}
|
28 |
+
self.label2id = {
|
29 |
+
"fake": 0,
|
30 |
+
"true": 1,
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
class BertLSTMForSequenceClassification(PreTrainedModel):
|
35 |
+
config_class = BertLSTMConfig
|
36 |
+
|
37 |
+
def __init__(self, config):
|
38 |
+
super(BertLSTMForSequenceClassification, self).__init__(config)
|
39 |
+
self.num_classes = config.num_classes
|
40 |
+
self.embed_dim = config.hidden_size # BERT hidden size is used as the embedding dimension
|
41 |
+
self.num_layers = config.num_layers
|
42 |
+
self.hidden_dim_lstm = config.hidden_dim_lstm
|
43 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
44 |
+
|
45 |
+
# Use BertModel instead of AlbertModel
|
46 |
+
self.bert = BertModel.from_pretrained('bert-base-uncased', output_hidden_states=True, output_attentions=False)
|
47 |
+
print("BERT Model Loaded")
|
48 |
+
|
49 |
+
# Adjust the input dimension for LSTM
|
50 |
+
self.lstm = nn.LSTM(self.embed_dim, self.hidden_dim_lstm, batch_first=True, num_layers=self.num_layers)
|
51 |
+
|
52 |
+
# Adjust the output dimension for the linear layer
|
53 |
+
self.fc = nn.Linear(self.hidden_dim_lstm, self.num_classes)
|
54 |
+
|
55 |
+
def forward(self, input_ids, attention_mask, token_type_ids, labels=None):
|
56 |
+
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
57 |
+
hidden_states = bert_output["hidden_states"]
|
58 |
+
|
59 |
+
# Extract the embeddings from the last layer of BERT
|
60 |
+
last_hidden_states = hidden_states[-1]
|
61 |
+
|
62 |
+
# Apply dropout
|
63 |
+
last_hidden_states = self.dropout(last_hidden_states)
|
64 |
+
|
65 |
+
# Pass through LSTM
|
66 |
+
lstm_output, _ = self.lstm(last_hidden_states, None)
|
67 |
+
|
68 |
+
# Take the output from the last time step
|
69 |
+
lstm_output = lstm_output[:, -1, :]
|
70 |
+
|
71 |
+
# Apply dropout
|
72 |
+
lstm_output = self.dropout(lstm_output)
|
73 |
+
|
74 |
+
# Linear layer for classification
|
75 |
+
logits = self.fc(lstm_output)
|
76 |
+
|
77 |
+
loss = None
|
78 |
+
if labels is not None:
|
79 |
+
loss = F.cross_entropy(logits, labels)
|
80 |
+
|
81 |
+
out = SequenceClassifierOutput(
|
82 |
+
loss=loss,
|
83 |
+
logits=logits,
|
84 |
+
hidden_states=bert_output.hidden_states,
|
85 |
+
attentions=bert_output.attentions,
|
86 |
+
)
|
87 |
+
return out
|