|
from abc import ABCMeta |
|
import torch |
|
from transformers.pytorch_utils import nn |
|
import torch.nn.functional as F |
|
from transformers import AlbertModel, AlbertForSequenceClassification, PreTrainedModel |
|
from transformers.modeling_outputs import SequenceClassifierOutput |
|
from transformers import AlbertConfig |
|
from transformers import PretrainedConfig |
|
|
|
class AlbertABSAConfig(PretrainedConfig): |
|
model_type = "albertCNNForSequenceClassification" |
|
|
|
def __init__(self, |
|
num_classes=2, |
|
embed_dim=768, |
|
conv_out_channels=256, |
|
conv_kernel_size=3, |
|
fc_hidden=128, |
|
dropout_rate=0.1, |
|
num_layers=12, |
|
**kwargs): |
|
super().__init__(**kwargs) |
|
self.num_classes = num_classes |
|
self.embed_dim = embed_dim |
|
self.conv_out_channels = conv_out_channels |
|
self.conv_kernel_size = conv_kernel_size |
|
self.fc_hidden = fc_hidden |
|
self.dropout_rate = dropout_rate |
|
self.num_layers = num_layers |
|
self.id2label = { |
|
0: "fake", |
|
1: "true", |
|
} |
|
self.label2id = { |
|
"fake": 0, |
|
"true": 1, |
|
} |
|
|
|
|
|
class AlbertCNNForSequenceClassification(PreTrainedModel, metaclass=ABCMeta): |
|
config_class = AlbertABSAConfig |
|
|
|
def __init__(self, config): |
|
super(AlbertCNNForSequenceClassification, self).__init__(config) |
|
self.num_classes = config.num_classes |
|
self.embed_dim = config.embed_dim |
|
self.num_layers = config.num_layers |
|
self.conv_out_channels = config.conv_out_channels |
|
self.conv_kernel_size = config.conv_kernel_size |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
self.albert = AlbertModel.from_pretrained('albert-base-v2', |
|
output_hidden_states=True, |
|
output_attentions=False) |
|
print("ALBERT Model Loaded") |
|
self.conv1d = nn.Conv1d(in_channels=self.embed_dim, out_channels=self.conv_out_channels, kernel_size=self.conv_kernel_size) |
|
self.fc = nn.Linear(self.conv_out_channels, self.num_classes) |
|
|
|
def forward(self, input_ids, attention_mask, token_type_ids, labels=None): |
|
albert_output = self.albert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) |
|
hidden_states = albert_output["hidden_states"] |
|
|
|
hidden_states = torch.stack([hidden_states[layer_i][:, 0].squeeze() |
|
for layer_i in range(0, self.num_layers)], dim=-1) |
|
hidden_states = hidden_states.view(-1, self.num_layers, self.embed_dim) |
|
hidden_states = hidden_states.permute(0, 2, 1) |
|
conv_output = self.conv1d(hidden_states) |
|
conv_output = F.relu(conv_output) |
|
conv_output = F.max_pool1d(conv_output, kernel_size=conv_output.size(2)) |
|
conv_output = conv_output.squeeze(-1) |
|
conv_output = self.dropout(conv_output) |
|
logits = self.fc(conv_output) |
|
loss = None |
|
if labels is not None: |
|
loss = F.cross_entropy(logits, labels) |
|
out = SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=albert_output.hidden_states, |
|
attentions=albert_output.attentions, |
|
) |
|
return out |