--- base_model: google/pegasus-x-base tags: - generated_from_trainer datasets: - ccdv/arxiv-summarization model-index: - name: Paper-Summarization-ArXiv results: - task: name: Summarization type: summarization dataset: name: ccdv/arxiv-summarization type: ccdv/arxiv-summarization config: section split: test args: section metrics: - name: ROUGE-1 type: rouge value: 43.2305 - name: ROUGE-2 type: rouge value: 16.6571 - name: ROUGE-L type: rouge value: 24.4315 - name: ROUGE-LSum type: rouge value: 33.9399 license: bigscience-openrail-m language: - en metrics: - rouge library_name: transformers pipeline_tag: summarization --- # Paper-Summarization-ArXiv This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the arxiv-summarization dataset. **Base Model**: [Pegasus-x-base (State-of-the-art for Long Context Summarization)](https://huggingface.co/google/pegasus-x-base) **Finetuning Dataset**: - We used **full of ArXiv Dataset (Cohan et al., 2018, NAACL-HLT 2018)** [[PDF]](https://arxiv.org/abs/1804.05685) - (Full length is 200,000+) **GPU**: (RTX A6000) x 1 **Train time**: About 120 hours for 5 epochs **Test time**: About 8 hours for test dataset. ## Intended uses & limitations - **Research Paper Summarization** ## Compare to Baseline - Pegasus-X-base **zero-shot** Performance: - R-1 | R-2 | R-L | R-LSUM : 6.2269 | 0.7894 | 4.6905 | 5.4591 - **This model** - R-1 | R-2 | R-L | R-LSUM : 43.2305 | 16.6571 | 24.4315 | 33.9399 at ```(python) model.generate(input_ids =inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), length_penalty=1, num_beams=2, max_length=128*4,min_length=150, no_repeat_ngram_size= 3, top_k=25,top_p=0.95) ``` - R-1 | R-2 | R-L | R-LSUM : 40.8486 | 16.3717 | 25.2937 | 33.6923 (refer to **PEGASUS-X's [paper](https://arxiv.org/pdf/2208.04347.pdf)**) at ```(python) model.generate(input_ids =inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), length_penalty=1, num_beams=1, max_length=128*2,top_p=1) ``` - R-1 | R-2 | R-L | R-LSUM : 38.1317 | 15.0357 | 23.0286 | 30.9938 (**Diverse Beam-Search Decoding**) at ```(python) model.generate(input_ids =inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), num_beam_groups=5,diversity_penalty=1.0,num_beams=5,min_length=150,max_length=128*4) ``` - R-1 | R-2 | R-L | R-LSUM : 43.3017 | 16.6023 | 24.1867 | 33.7019 at ```(python) model.generate(input_ids =inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), length_penalty=1.2, num_beams=4, max_length=128*4,min_length=150, no_repeat_ngram_size= 3, temperature=0.9,top_k=50,top_p=0.92) ``` ## Training procedure We use huggingface-based environment such as datasets, trainer, etc. ### Training hyperparameters The following hyperparameters were used during training: ```(python) learning_rate: 1e-05, train_batch_size: 1, eval_batch_size: 1, seed: 42, gradient_accumulation_steps: 64, total_train_batch_size: 64, optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08, lr_scheduler_type: linear, lr_scheduler_warmup_steps: 1586, num_epochs: 5 ``` ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.6153 | 1.0 | 3172 | 2.1045 | | 2.202 | 2.0 | 6344 | 2.0511 | | 2.1547 | 3.0 | 9516 | 2.0282 | | 2.132 | 4.0 | 12688 | 2.0164 | | 2.1222 | 5.0 | 15860 | 2.0127 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2