licence added
Browse files
README.md
CHANGED
@@ -1,9 +1,34 @@
|
|
1 |
# CZERT
|
2 |
-
This repository keeps trained
|
3 |
](https://arxiv.org/abs/2103.13031)
|
4 |
For more information, see the paper
|
5 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
## How to Use CZERT?
|
8 |
|
9 |
### Sentence Level Tasks
|
@@ -14,14 +39,14 @@ We evaluate our model on two sentence level tasks:
|
|
14 |
|
15 |
|
16 |
<!-- tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False)
|
17 |
-
|
18 |
|
19 |
or
|
20 |
|
21 |
self.tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False)
|
22 |
self.model_encoder = AutoModelForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, from_tf=True)
|
23 |
-->
|
24 |
-
|
25 |
### Document Level Tasks
|
26 |
We evaluate our model on one document level task
|
27 |
* Multi-label Document Classification.
|
@@ -77,8 +102,8 @@ Comparison of F1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlo
|
|
77 |
|
78 |
| | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | dep-based | gold-dep |
|
79 |
|:------:|:----------:|:----------:|:-------------:|:----------:|:----------:|:---------:|:--------:|
|
80 |
-
| span | 78.547 ± 0.110 |
|
81 |
-
| syntax | 90.226 ± 0.224 |
|
82 |
|
83 |
SRL results – dep columns are evaluate with labelled F1 from CoNLL 2009 evaluation script, other columns are evaluated with span F1 score same as it was used for NER evaluation. For more information see [the paper](https://arxiv.org/abs/2103.13031).
|
84 |
|
@@ -94,6 +119,9 @@ SRL results – dep columns are evaluate with labelled F1 from CoNLL 2009 evalua
|
|
94 |
Comparison of f1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on named entity recognition task. For more information see [the paper](https://arxiv.org/abs/2103.13031).
|
95 |
|
96 |
|
|
|
|
|
|
|
97 |
## How should I cite CZERT?
|
98 |
For now, please cite [the Arxiv paper](https://arxiv.org/abs/2103.13031):
|
99 |
```
|
@@ -107,3 +135,4 @@ For now, please cite [the Arxiv paper](https://arxiv.org/abs/2103.13031):
|
|
107 |
journal={arXiv preprint arXiv:2103.13031},
|
108 |
}
|
109 |
```
|
|
|
|
1 |
# CZERT
|
2 |
+
This repository keeps trained Czert-B model for the paper [Czert – Czech BERT-like Model for Language Representation
|
3 |
](https://arxiv.org/abs/2103.13031)
|
4 |
For more information, see the paper
|
5 |
|
6 |
|
7 |
+
## Available Models
|
8 |
+
You can download **MLM & NSP only** pretrained models
|
9 |
+
~~[CZERT-A-v1](https://air.kiv.zcu.cz/public/CZERT-A-czert-albert-base-uncased.zip)
|
10 |
+
[CZERT-B-v1](https://air.kiv.zcu.cz/public/CZERT-B-czert-bert-base-cased.zip)~~
|
11 |
+
|
12 |
+
After some additional experiments, we found out that the tokenizers config was exported wrongly. In Czert-B-v1, the tokenizer parameter "do_lower_case" was wrongly set to true. In Czert-A-v1 the parameter "strip_accents" was incorrectly set to true.
|
13 |
+
|
14 |
+
Both mistakes are repaired in v2.
|
15 |
+
[CZERT-A-v2](https://air.kiv.zcu.cz/public/CZERT-A-v2-czert-albert-base-uncased.zip)
|
16 |
+
[CZERT-B-v2](https://air.kiv.zcu.cz/public/CZERT-B-v2-czert-bert-base-cased.zip)
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
or choose from one of **Finetuned Models**
|
21 |
+
| | Models |
|
22 |
+
| - | - |
|
23 |
+
| Sentiment Classification<br> (Facebook or CSFD) | [CZERT-A-sentiment-FB](https://air.kiv.zcu.cz/public/CZERT-A_fb.zip) <br> [CZERT-B-sentiment-FB](https://air.kiv.zcu.cz/public/CZERT-B_fb.zip) <br> [CZERT-A-sentiment-CSFD](https://air.kiv.zcu.cz/public/CZERT-A_csfd.zip) <br> [CZERT-B-sentiment-CSFD](https://air.kiv.zcu.cz/public/CZERT-B_csfd.zip) | Semantic Text Similarity <br> (Czech News Agency) | [CZERT-A-sts-CNA](https://air.kiv.zcu.cz/public/CZERT-A-sts-CNA.zip) <br> [CZERT-B-sts-CNA](https://air.kiv.zcu.cz/public/CZERT-B-sts-CNA.zip)
|
24 |
+
| Named Entity Recognition | [CZERT-A-ner-CNEC](https://air.kiv.zcu.cz/public/CZERT-A-ner-CNEC-cased.zip) <br> [CZERT-B-ner-CNEC](https://air.kiv.zcu.cz/public/CZERT-B-ner-CNEC-cased.zip) <br>[PAV-ner-CNEC](https://air.kiv.zcu.cz/public/PAV-ner-CNEC-cased.zip) <br> [CZERT-A-ner-BSNLP](https://air.kiv.zcu.cz/public/CZERT-A-ner-BSNLP-cased.zip)<br>[CZERT-B-ner-BSNLP](https://air.kiv.zcu.cz/public/CZERT-B-ner-BSNLP-cased.zip) <br>[PAV-ner-BSNLP](https://air.kiv.zcu.cz/public/PAV-ner-BSNLP-cased.zip) |
|
25 |
+
| Morphological Tagging<br> | [CZERT-A-morphtag-126k](https://air.kiv.zcu.cz/public/CZERT-A-morphtag-126k-cased.zip)<br>[CZERT-B-morphtag-126k](https://air.kiv.zcu.cz/public/CZERT-B-morphtag-126k-cased.zip) |
|
26 |
+
| Semantic Role Labelling |[CZERT-A-srl](https://air.kiv.zcu.cz/public/CZERT-A-srl-cased.zip)<br> [CZERT-B-srl](https://air.kiv.zcu.cz/public/CZERT-B-srl-cased.zip) |
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
## How to Use CZERT?
|
33 |
|
34 |
### Sentence Level Tasks
|
|
|
39 |
|
40 |
|
41 |
<!-- tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False)
|
42 |
+
model = TFAlbertForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, num_labels=1)
|
43 |
|
44 |
or
|
45 |
|
46 |
self.tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False)
|
47 |
self.model_encoder = AutoModelForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, from_tf=True)
|
48 |
-->
|
49 |
+
|
50 |
### Document Level Tasks
|
51 |
We evaluate our model on one document level task
|
52 |
* Multi-label Document Classification.
|
|
|
102 |
|
103 |
| | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | dep-based | gold-dep |
|
104 |
|:------:|:----------:|:----------:|:-------------:|:----------:|:----------:|:---------:|:--------:|
|
105 |
+
| span | 78.547 ± 0.110 | 79.333 ± 0.080 | 51.365 ± 0.423 | 72.254 ± 0.172 | **81.861 ± 0.102** | \- | \- |
|
106 |
+
| syntax | 90.226 ± 0.224 | 90.492 ± 0.040 | 80.747 ± 0.131 | 80.319 ± 0.054 | **91.462 ± 0.062** | 85.19 | 89.52 |
|
107 |
|
108 |
SRL results – dep columns are evaluate with labelled F1 from CoNLL 2009 evaluation script, other columns are evaluated with span F1 score same as it was used for NER evaluation. For more information see [the paper](https://arxiv.org/abs/2103.13031).
|
109 |
|
|
|
119 |
Comparison of f1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on named entity recognition task. For more information see [the paper](https://arxiv.org/abs/2103.13031).
|
120 |
|
121 |
|
122 |
+
## Licence
|
123 |
+
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/
|
124 |
+
|
125 |
## How should I cite CZERT?
|
126 |
For now, please cite [the Arxiv paper](https://arxiv.org/abs/2103.13031):
|
127 |
```
|
|
|
135 |
journal={arXiv preprint arXiv:2103.13031},
|
136 |
}
|
137 |
```
|
138 |
+
|