ondfa commited on
Commit
c7098f0
1 Parent(s): e1fa83b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -6
README.md CHANGED
@@ -1,9 +1,6 @@
1
  ---
2
  tags:
3
  - cs
4
- - bert
5
- - Transformers
6
- - Tensorflow
7
  ---
8
 
9
  # CZERT
@@ -47,14 +44,14 @@ We evaluate our model on two sentence level tasks:
47
 
48
 
49
  <!-- tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False)
50
- \tmodel = TFAlbertForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, num_labels=1)
51
 
52
  or
53
 
54
  self.tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False)
55
  self.model_encoder = AutoModelForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, from_tf=True)
56
  -->
57
- \t
58
  ### Document Level Tasks
59
  We evaluate our model on one document level task
60
  * Multi-label Document Classification.
@@ -110,7 +107,7 @@ Comparison of F1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlo
110
 
111
  | | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | dep-based | gold-dep |
112
  |:------:|:----------:|:----------:|:-------------:|:----------:|:----------:|:---------:|:--------:|
113
- | span | 78.547 ± 0.110 | 79.333 ± 0.080 | 51.365 ± 0.423 | 72.254 ± 0.172 | **81.861 ± 0.102** | \\- | \\- |
114
  | syntax | 90.226 ± 0.224 | 90.492 ± 0.040 | 80.747 ± 0.131 | 80.319 ± 0.054 | **91.462 ± 0.062** | 85.19 | 89.52 |
115
 
116
  SRL results – dep columns are evaluate with labelled F1 from CoNLL 2009 evaluation script, other columns are evaluated with span F1 score same as it was used for NER evaluation. For more information see [the paper](https://arxiv.org/abs/2103.13031).
 
1
  ---
2
  tags:
3
  - cs
 
 
 
4
  ---
5
 
6
  # CZERT
 
44
 
45
 
46
  <!-- tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False)
47
+ \\tmodel = TFAlbertForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, num_labels=1)
48
 
49
  or
50
 
51
  self.tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False)
52
  self.model_encoder = AutoModelForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, from_tf=True)
53
  -->
54
+ \\t
55
  ### Document Level Tasks
56
  We evaluate our model on one document level task
57
  * Multi-label Document Classification.
 
107
 
108
  | | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | dep-based | gold-dep |
109
  |:------:|:----------:|:----------:|:-------------:|:----------:|:----------:|:---------:|:--------:|
110
+ | span | 78.547 ± 0.110 | 79.333 ± 0.080 | 51.365 ± 0.423 | 72.254 ± 0.172 | **81.861 ± 0.102** | \\\\- | \\\\- |
111
  | syntax | 90.226 ± 0.224 | 90.492 ± 0.040 | 80.747 ± 0.131 | 80.319 ± 0.054 | **91.462 ± 0.062** | 85.19 | 89.52 |
112
 
113
  SRL results – dep columns are evaluate with labelled F1 from CoNLL 2009 evaluation script, other columns are evaluated with span F1 score same as it was used for NER evaluation. For more information see [the paper](https://arxiv.org/abs/2103.13031).