File size: 44,043 Bytes
14f6f61
 
4088864
 
14f6f61
 
 
 
 
 
 
 
 
 
73fb27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14f6f61
 
73fb27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14f6f61
 
73fb27f
14f6f61
73fb27f
 
 
14f6f61
73fb27f
14f6f61
73fb27f
 
 
 
 
 
 
 
14f6f61
 
 
 
 
 
 
 
 
 
73fb27f
 
 
14f6f61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
---
license: agpl-3.0
library_name: ultralytics
pipeline_tag: object-detection
---

<div align="center">
  <p>
    <a href="https://www.ultralytics.com/events/yolovision" target="_blank">
      <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
  </p>

[中文](https://docs.ultralytics.com/zh) | [한국어](https://docs.ultralytics.com/ko) | [日本語](https://docs.ultralytics.com/ja) | [Русский](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Français](https://docs.ultralytics.com/fr) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt) | [Türkçe](https://docs.ultralytics.com/tr) | [Tiếng Việt](https://docs.ultralytics.com/vi) | [العربية](https://docs.ultralytics.com/ar)

<div style="display: flex; justify-content: center; align-items: center; flex-wrap: wrap; gap: 20px; text-align: center; margin: 5px;">
  <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml">
    <img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI">
  </a>
  <a href="https://zenodo.org/badge/latestdoi/264818686">
    <img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation">
  </a>
  <a href="https://hub.docker.com/r/ultralytics/yolov5">
    <img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls">
  </a>
  <a href="https://discord.com/invite/ultralytics">
    <img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue">
  </a>
  <a href="https://community.ultralytics.com/">
    <img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue">
  </a>
  <a href="https://reddit.com/r/ultralytics">
    <img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue">
  </a>
</div>
<div style="display: flex; justify-content: center; align-items: center; flex-wrap: wrap; gap: 20px; text-align: center; margin-top: 5px;">
  <a href="https://bit.ly/yolov5-paperspace-notebook">
    <img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient">
  </a>
  <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
    <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
  </a>
  <a href="https://www.kaggle.com/models/ultralytics/yolov5">
    <img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle">
  </a>
</div>

YOLOv5 🚀 is the world's most loved vision AI, representing <a href="https://www.ultralytics.com/">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href="https://docs.ultralytics.com/yolov5/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> for support, and join our <a href="https://discord.com/invite/ultralytics">Discord</a> community for questions and discussions! To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).

<div style="display: flex; justify-content: center; align-items: center; gap: 10px; flex-wrap: wrap; margin-top: 20px;">
  <a href="https://github.com/ultralytics">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="40px" alt="Ultralytics GitHub">
  </a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="40px">
  <a href="https://www.linkedin.com/company/ultralytics/">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="40px" alt="Ultralytics LinkedIn">
  </a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="40px">
  <a href="https://twitter.com/ultralytics">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="40px" alt="Ultralytics Twitter">
  </a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="40px">
  <a href="https://youtube.com/ultralytics?sub_confirmation=1">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="40px" alt="Ultralytics YouTube">
  </a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="40px">
  <a href="https://www.tiktok.com/@ultralytics">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="40px" alt="Ultralytics TikTok">
  </a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="40px">
  <a href="https://ultralytics.com/bilibili">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="40px" alt="Ultralytics BiliBili">
  </a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="40px">
  <a href="https://discord.com/invite/ultralytics">
    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="40px" alt="Ultralytics Discord">
  </a>
</div>

<br>

<div align="center">
  <h2>YOLO11 🚀 NEW</h2>
</div>

We are excited to unveil the launch of Ultralytics YOLO11 🚀, the latest advancement in our state-of-the-art (SOTA) vision models! Available now at **[GitHub](https://github.com/ultralytics/ultralytics)**, YOLO11 builds on our legacy of speed, precision, and ease of use. Whether you're tackling object detection, image segmentation, or image classification, YOLO11 delivers the performance and versatility needed to excel in diverse applications. Get started today and unlock the full potential of YOLO11! Visit the [Ultralytics Docs](https://docs.ultralytics.com/) for comprehensive guides and resources:

<div style="display: flex; justify-content: center; align-items: center; gap: 10px; margin-top: 20px;">
  <a href="https://badge.fury.io/py/ultralytics">
    <img src="https://badge.fury.io/py/ultralytics.svg" alt="PyPI version">
  </a>
  <a href="https://www.pepy.tech/projects/ultralytics">
    <img src="https://static.pepy.tech/badge/ultralytics" alt="Downloads">
  </a>
</div>

```bash
pip install ultralytics
```

<div align="center">
  <a href="https://www.ultralytics.com/yolo" target="_blank">
  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png"></a>
</div>

<div align="center">
  <h2>Documentation</h2>
</div>

See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5/) for full documentation on training, testing and deployment. See below for quickstart examples.

<details open>
<summary>Install</summary>

Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.8.0**](https://www.python.org/) environment, including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).

```bash
git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install
```

</details>

<details>
<summary>Inference</summary>

YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).

```python
import torch

# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s")  # or yolov5n - yolov5x6, custom

# Images
img = "https://ultralytics.com/images/zidane.jpg"  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
```

</details>

<details>
<summary>Inference with detect.py</summary>

`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.

```bash
python detect.py --weights yolov5s.pt --source 0                               # webcam
                                               img.jpg                         # image
                                               vid.mp4                         # video
                                               screen                          # screenshot
                                               path/                           # directory
                                               list.txt                        # list of images
                                               list.streams                    # list of streams
                                               'path/*.jpg'                    # glob
                                               'https://youtu.be/LNwODJXcvt4'  # YouTube
                                               'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
```

</details>

<details>
<summary>Training</summary>

The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) results. [Models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are 1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/) times faster). Use the largest `--batch-size` possible, or pass `--batch-size -1` for YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.

```bash
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml  --batch-size 128
                                                                 yolov5s                    64
                                                                 yolov5m                    40
                                                                 yolov5l                    24
                                                                 yolov5x                    16
```

<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">

</details>

<details open>
<summary>Tutorials</summary>

- [Train Custom Data](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/) 🚀 RECOMMENDED
- [Tips for Best Training Results](https://docs.ultralytics.com/guides/model-training-tips/) ☘️
- [Multi-GPU Training](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/)
- [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/) 🌟 NEW
- [TFLite, ONNX, CoreML, TensorRT Export](https://docs.ultralytics.com/yolov5/tutorials/model_export/) 🚀
- [NVIDIA Jetson platform Deployment](https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano/) 🌟 NEW
- [Test-Time Augmentation (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/)
- [Model Ensembling](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling/)
- [Model Pruning/Sparsity](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity/)
- [Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/)
- [Transfer Learning with Frozen Layers](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers/)
- [Architecture Summary](https://docs.ultralytics.com/yolov5/tutorials/architecture_description/) 🌟 NEW
- [Ultralytics HUB to train and deploy YOLO](https://www.ultralytics.com/hub) 🚀 RECOMMENDED
- [ClearML Logging](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration/)
- [YOLOv5 with Neural Magic's Deepsparse](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization/)
- [Comet Logging](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration/) 🌟 NEW

</details>

## <div align="center">Integrations</div>

Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [W&B](https://docs.wandb.ai/guides/integrations/ultralytics/), [Comet](https://bit.ly/yolov8-readme-comet), [Roboflow](https://roboflow.com/?ref=ultralytics) and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.

<br>
<a href="https://www.ultralytics.com/hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations"></a>
<br>
<br>

<div align="center">
  <a href="https://www.ultralytics.com/hub">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
  <a href="https://docs.wandb.ai/guides/integrations/ultralytics/">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="ClearML logo"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
  <a href="https://bit.ly/yolov8-readme-comet">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
  <a href="https://bit.ly/yolov5-neuralmagic">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="NeuralMagic logo"></a>
</div>

|                                                         Ultralytics HUB 🚀                                                         |                                                               W&B                                                               |                                                                       Comet ⭐ NEW                                                                        |                                              Neural Magic                                              |
| :--------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://www.ultralytics.com/hub). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.wandb.ai/guides/integrations/ultralytics/) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLOv5 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |

## <div align="center">Ultralytics HUB</div>

Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** now!

<a align="center" href="https://www.ultralytics.com/hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>

## <div align="center">Why YOLOv5</div>

YOLOv5 has been designed to be super easy to get started and simple to learn. We prioritize real-world results.

<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
<details>
  <summary>YOLOv5-P5 640 Figure</summary>

<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
</details>
<details>
  <summary>Figure Notes</summary>

- **COCO AP val** denotes [email protected]:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
- **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
- **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`

</details>

### Pretrained Checkpoints

| Model                                                                                           | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
| ----------------------------------------------------------------------------------------------- | --------------------- | -------------------- | ----------------- | ---------------------------- | ----------------------------- | ------------------------------ | ------------------ | ---------------------- |
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt)              | 640                   | 28.0                 | 45.7              | **45**                       | **6.3**                       | **0.6**                        | **1.9**            | **4.5**                |
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt)              | 640                   | 37.4                 | 56.8              | 98                           | 6.4                           | 0.9                            | 7.2                | 16.5                   |
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt)              | 640                   | 45.4                 | 64.1              | 224                          | 8.2                           | 1.7                            | 21.2               | 49.0                   |
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt)              | 640                   | 49.0                 | 67.3              | 430                          | 10.1                          | 2.7                            | 46.5               | 109.1                  |
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt)              | 640                   | 50.7                 | 68.9              | 766                          | 12.1                          | 4.8                            | 86.7               | 205.7                  |
|                                                                                                 |                       |                      |                   |                              |                               |                                |                    |                        |
| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt)            | 1280                  | 36.0                 | 54.4              | 153                          | 8.1                           | 2.1                            | 3.2                | 4.6                    |
| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt)            | 1280                  | 44.8                 | 63.7              | 385                          | 8.2                           | 3.6                            | 12.6               | 16.8                   |
| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt)            | 1280                  | 51.3                 | 69.3              | 887                          | 11.1                          | 6.8                            | 35.7               | 50.0                   |
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt)            | 1280                  | 53.7                 | 71.3              | 1784                         | 15.8                          | 10.5                           | 76.8               | 111.4                  |
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+ [TTA] | 1280<br>1536          | 55.0<br>**55.8**     | 72.7<br>**72.7**  | 3136<br>-                    | 26.2<br>-                     | 19.4<br>-                      | 140.7<br>-         | 209.8<br>-             |

<details>
  <summary>Table Notes</summary>

- All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
- **TTA** [Test Time Augmentation](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation/) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`

</details>

## <div align="center">Segmentation</div>

Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials.

<details>
  <summary>Segmentation Checkpoints</summary>

<div align="center">
<a align="center" href="https://www.ultralytics.com/yolo" target="_blank">
<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
</div>

We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.

| Model                                                                                      | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
| ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | --------------------------------------------- | ------------------------------ | ------------------------------ | ------------------ | ---------------------- |
| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640                   | 27.6                 | 23.4                  | 80:17                                         | **62.7**                       | **1.2**                        | **2.0**            | **7.1**                |
| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640                   | 37.6                 | 31.7                  | 88:16                                         | 173.3                          | 1.4                            | 7.6                | 26.4                   |
| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640                   | 45.0                 | 37.1                  | 108:36                                        | 427.0                          | 2.2                            | 22.0               | 70.8                   |
| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640                   | 49.0                 | 39.9                  | 66:43 (2x)                                    | 857.4                          | 2.9                            | 47.9               | 147.7                  |
| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640                   | **50.7**             | **41.4**              | 62:56 (3x)                                    | 1579.2                         | 4.5                            | 88.8               | 265.7                  |

- All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official
- **Accuracy** values are for single-model single-scale on COCO dataset.<br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
- **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values indicate inference speed only (NMS adds about 1ms per image). <br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`

</details>

<details>
  <summary>Segmentation Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>

### Train

YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dataset with `--data coco128-seg.yaml` argument and manual download of COCO-segments dataset with `bash data/scripts/get_coco.sh --train --val --segments` and then `python train.py --data coco.yaml`.

```bash
# Single-GPU
python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640

# Multi-GPU DDP
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
```

### Val

Validate YOLOv5s-seg mask mAP on COCO dataset:

```bash
bash data/scripts/get_coco.sh --val --segments  # download COCO val segments split (780MB, 5000 images)
python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640  # validate
```

### Predict

Use pretrained YOLOv5m-seg.pt to predict bus.jpg:

```bash
python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg
```

```python
model = torch.hub.load(
    "ultralytics/yolov5", "custom", "yolov5m-seg.pt"
)  # load from PyTorch Hub (WARNING: inference not yet supported)
```

| ![zidane](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![bus](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) |
| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |

### Export

Export YOLOv5s-seg model to ONNX and TensorRT:

```bash
python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
```

</details>

## <div align="center">Classification</div>

YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation and deployment! See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v6.2) and visit our [YOLOv5 Classification Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) for quickstart tutorials.

<details>
  <summary>Classification Checkpoints</summary>

<br>

We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.

| Model                                                                                              | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
| -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ------------------------------ | ----------------------------------- | ------------------ | ---------------------- |
| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt)         | 224                   | 64.6             | 85.4             | 7:59                                         | **3.3**                        | **0.5**                             | **2.5**            | **0.5**                |
| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt)         | 224                   | 71.5             | 90.2             | 8:09                                         | 6.6                            | 0.6                                 | 5.4                | 1.4                    |
| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt)         | 224                   | 75.9             | 92.9             | 10:06                                        | 15.5                           | 0.9                                 | 12.9               | 3.9                    |
| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt)         | 224                   | 78.0             | 94.0             | 11:56                                        | 26.9                           | 1.4                                 | 26.5               | 8.5                    |
| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt)         | 224                   | **79.0**         | **94.4**         | 15:04                                        | 54.3                           | 1.8                                 | 48.1               | 15.9                   |
|                                                                                                    |                       |                  |                  |                                              |                                |                                     |                    |                        |
| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt)               | 224                   | 70.3             | 89.5             | **6:47**                                     | 11.2                           | 0.5                                 | 11.7               | 3.7                    |
| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt)               | 224                   | 73.9             | 91.8             | 8:33                                         | 20.6                           | 0.9                                 | 21.8               | 7.4                    |
| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt)               | 224                   | 76.8             | 93.4             | 11:10                                        | 23.4                           | 1.0                                 | 25.6               | 8.5                    |
| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt)             | 224                   | 78.5             | 94.3             | 17:10                                        | 42.1                           | 1.9                                 | 44.5               | 15.9                   |
|                                                                                                    |                       |                  |                  |                                              |                                |                                     |                    |                        |
| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224                   | 75.1             | 92.4             | 13:03                                        | 12.5                           | 1.3                                 | 5.3                | 1.0                    |
| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224                   | 76.4             | 93.2             | 17:04                                        | 14.9                           | 1.6                                 | 7.8                | 1.5                    |
| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224                   | 76.6             | 93.4             | 17:10                                        | 15.9                           | 1.6                                 | 9.1                | 1.7                    |
| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224                   | 77.7             | 94.0             | 19:19                                        | 18.9                           | 1.9                                 | 12.2               | 2.4                    |

<details>
  <summary>Table Notes (click to expand)</summary>

- All checkpoints are trained to 90 epochs with SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at image size 224 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`

</details>
</details>

<details>
  <summary>Classification Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>

### Train

YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.

```bash
# Single-GPU
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128

# Multi-GPU DDP
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
```

### Val

Validate YOLOv5m-cls accuracy on ImageNet-1k dataset:

```bash
bash data/scripts/get_imagenet.sh --val  # download ImageNet val split (6.3G, 50000 images)
python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224  # validate
```

### Predict

Use pretrained YOLOv5s-cls.pt to predict bus.jpg:

```bash
python classify/predict.py --weights yolov5s-cls.pt --source data/images/bus.jpg
```

```python
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s-cls.pt")  # load from PyTorch Hub
```

### Export

Export a group of trained YOLOv5s-cls, ResNet and EfficientNet models to ONNX and TensorRT:

```bash
python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
```

</details>

## <div align="center">Environments</div>

Get started in seconds with our verified environments. Click each icon below for details.

<div align="center">
  <a href="https://bit.ly/yolov5-paperspace-notebook">
    <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gradient.png" width="10%" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
  <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
    <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-colab-small.png" width="10%" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
  <a href="https://www.kaggle.com/models/ultralytics/yolov5">
    <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-kaggle-small.png" width="10%" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
  <a href="https://hub.docker.com/r/ultralytics/yolov5">
    <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-docker-small.png" width="10%" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
  <a href="https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/">
    <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-aws-small.png" width="10%" /></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
  <a href="https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/">
    <img src="https://github.com/ultralytics/assets/releases/download/v0.0.0/logo-gcp-small.png" width="10%" /></a>
</div>

## <div align="center">Contribute</div>

We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out the [YOLOv5 Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!

<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->

<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
<img src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" /></a>

## <div align="center">License</div>

Ultralytics offers two licensing options to accommodate diverse use cases:

- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/license) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) file for more details.
- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://www.ultralytics.com/license).

## <div align="center">Contact</div>

For YOLOv5 bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues), and join our [Discord](https://discord.com/invite/ultralytics) community for questions and discussions!

<br>
<div align="center">
  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
  <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
  <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
  <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
  <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
</div>

[tta]: https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation