nunonmg commited on
Commit
afc55d7
·
verified ·
1 Parent(s): 7ec4eef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -165
README.md CHANGED
@@ -1,201 +1,133 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
 
 
 
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
 
 
201
 
 
 
1
  ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - en
5
+ - de
6
+ - fr
7
+ - zh
8
+ - pt
9
+ - nl
10
+ - ru
11
+ - ko
12
+ - it
13
+ - es
14
+ metrics:
15
+ - comet
16
+ pipeline_tag: translation
17
  ---
18
+ # Model Card for TowerInstruct-7B-v0.1
 
 
 
 
 
19
 
20
  ## Model Details
21
 
22
  ### Model Description
23
 
24
+ TowerInstruct-7B is a language model that results from fine-tuning TowerBase on the TowerBlocks supervised fine-tuning dataset. TowerInstruct-7B-v0.1 is the first model in the series.
25
+ The model is trained to handle several translation-related tasks, such as general machine translation (e.g., sentence- and paragraph/document-level translation, terminology-aware translation, context-aware translation), automatic post edition, named-entity recognition, gramatical error correction, and paraphrase generation.
26
+ We will release more details in the upcoming technical report.
27
+
28
+ - **Developed by:** Unbabel, Instituto Superior Técnico, CentraleSupélec University of Paris-Saclay
29
+ - **Model type:** A 7B parameter model fine-tuned on a mix of publicly available, synthetic datasets on translation-related tasks, as well as conversational datasets and code instructions.
30
+ - **Language(s) (NLP):** English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian
31
+ - **License:** CC-BY-NC-4.0, Llama 2 is licensed under the [LLAMA 2 Community License](https://ai.meta.com/llama/license/), Copyright © Meta Platforms, Inc. All Rights Reserved.
32
+ - **Finetuned from model:** [TowerBase](https://huggingface.co/Unbabel/TowerBase-7B-v0.1)
33
+
34
+ **Update**: TowerInstruct-7B-v0.2 has more reliable document-level translation capabilities in comparison with TowerInstruct-7B-v0.1. The new version of TowerBlocks used to train v0.2 is also available in the Tower collection.
35
+
36
+ ## Intended uses & limitations
37
+
38
+ The model was initially fine-tuned on a filtered and preprocessed supervised fine-tuning dataset ([TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1)), which contains a diverse range of data sources:
39
+ - Translation (sentence and paragraph-level)
40
+ - Automatic Post Edition
41
+ - Machine Translation Evaluation
42
+ - Context-aware Translation
43
+ - Terminology-aware Translation
44
+ - Multi-reference Translation
45
+ - Named-entity Recognition
46
+ - Paraphrase Generation
47
+ - Synthetic Chat data
48
+ - Code instructions
49
+
50
+ You can find the dataset and all data sources of [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1) here.
51
+
52
+ Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
53
+
54
+ ```python
55
+ # Install transformers from source - only needed for versions <= v4.34
56
+ # pip install git+https://github.com/huggingface/transformers.git
57
+ # pip install accelerate
58
+
59
+ import torch
60
+ from transformers import pipeline
61
+
62
+ pipe = pipeline("text-generation", model="Unbabel/TowerInstruct-v0.1", torch_dtype=torch.bfloat16, device_map="auto")
63
+ # We use the tokenizer’s chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
64
+ messages = [
65
+ {"role": "user", "content": "Translate the following text from Portuguese into English.\nPortuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução.\nEnglish:"},
66
+ ]
67
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
68
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=False)
69
+ print(outputs[0]["generated_text"])
70
+ # <|im_start|>user
71
+ # Translate the following text from Portuguese into English.
72
+ # Portuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução.
73
+ # English:<|im_end|>
74
+ # <|im_start|>assistant
75
+ # A group of researchers has launched a new model for translation-related tasks.
76
+ ```
77
 
78
  ### Out-of-Scope Use
79
 
80
+ The model is not guaranteed to perform for languages other than the 10 languages it supports. Even though we trained the model on conversational data and code instructions, it is not intended to be used as a conversational chatbot or code assistant.
81
+ We are currently working on improving quality and consistency on document-level translation. This model should is not intended to be use as a document-level translator.
 
82
 
83
  ## Bias, Risks, and Limitations
84
 
85
+ TowerInstruct-v0.1 has not been aligned to human preferences, so the model may generate problematic outputs (e.g., hallucinations, harmful content, or false statements).
86
 
87
+ ## Prompt Format
88
 
89
+ TowerInstruct-v0.1 was trained using the ChatML prompt templates without any system prompts. An example follows below:
90
+ ```
91
+ <|im_start|>user
92
+ {USER PROMPT}<|im_end|>
93
+ <|im_start|>assistant
94
+ {MODEL RESPONSE}<|im_end|>
95
+ <|im_start|>user
96
+ [...]
97
+ ```
98
 
99
+ ### Supervised tasks
100
 
101
+ The prompts for all supervised tasks can be found in [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1). We have used multiple prompt templates for each task. While different prompts may offer different outputs, the difference in downstream performance should be very minimal.
 
 
 
 
 
 
102
 
103
  ## Training Details
104
 
105
  ### Training Data
106
 
107
+ Link to [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1).
 
 
 
 
 
 
 
 
 
 
 
108
 
109
  #### Training Hyperparameters
110
 
111
+ The following hyperparameters were used during training:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
 
113
+ - total_train_batch_size: 256
114
 
115
+ - learning_rate: 7e-06
116
 
117
+ - lr_scheduler_type: cosine
118
 
119
+ - lr_scheduler_warmup_steps: 500
120
 
121
+ - weight_decay: 0.01
122
 
123
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
124
 
125
+ - num_epochs: 4
126
 
127
+ - max_seq_length: 2048
128
 
129
+ ## Citation
130
 
131
+ To be completed.
132
 
133
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)