Ubuntu commited on
Commit
1358d90
·
1 Parent(s): c211a6e

WMT 22 DA model card

Browse files
Files changed (1) hide show
  1. README.md +52 -0
README.md CHANGED
@@ -1,3 +1,55 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+
5
+ This is a [COMET](https://github.com/Unbabel/COMET) evaluation model: It receives a triplet with (source sentence, translation, reference translation) and returns a score that reflects the quality of the translation compared to both source and reference.
6
+
7
+ # Paper
8
+
9
+ [COMET-22: Unbabel-IST 2022 Submission for the Metrics Shared Task](https://aclanthology.org/2022.wmt-1.52) (Rei et al., WMT 2022)
10
+
11
+ ## Usage (unbabel-comet)
12
+
13
+ Using this model requires unbabel-comet to be installed:
14
+
15
+ ```bash
16
+ pip install --upgrade pip # ensures that pip is current
17
+ pip install unbabel-comet
18
+ ```
19
+
20
+ Then you can use the model like this:
21
+
22
+ ```python
23
+ from comet import download_model, load_from_checkpoint
24
+
25
+ model_path = download_model("Unbabel/wmt22-comet-da")
26
+ model = load_from_checkpoint(model_path)
27
+ data = [
28
+ {
29
+ "src": "Dem Feuer konnte Einhalt geboten werden",
30
+ "mt": "The fire could be stopped",
31
+ "ref": "They were able to control the fire."
32
+ },
33
+ {
34
+ "src": "Schulen und Kindergärten wurden eröffnet.",
35
+ "mt": "Schools and kindergartens were open",
36
+ "ref": "Schools and kindergartens opened"
37
+ }
38
+ ]
39
+ model_output = model.predict(data, batch_size=8, gpus=1)
40
+ print (model_output)
41
+ ```
42
+
43
+ ## Intended uses
44
+
45
+ Our model is intented to be used for **MT evaluation**.
46
+
47
+ Given a a triplet with (source sentence, translation, reference translation) outputs a single score between 0 and 1 where 1 represents a perfect translation.
48
+
49
+ ## Languages Covered:
50
+
51
+ This model builds on top of XLM-R which cover the following languages:
52
+
53
+ Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Basque, Belarusian, Bengali, Bengali Romanized, Bosnian, Breton, Bulgarian, Burmese, Burmese, Catalan, Chinese (Simplified), Chinese (Traditional), Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Hausa, Hebrew, Hindi, Hindi Romanized, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Macedonian, Malagasy, Malay, Malayalam, Marathi, Mongolian, Nepali, Norwegian, Oriya, Oromo, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Sanskri, Scottish, Gaelic, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tamil, Tamil Romanized, Telugu, Telugu Romanized, Thai, Turkish, Ukrainian, Urdu, Urdu Romanized, Uyghur, Uzbek, Vietnamese, Welsh, Western, Frisian, Xhosa, Yiddish.
54
+
55
+ Thus, results for language pairs containing uncovered languages are unreliable!